Study of the Diffraction Grating on a Convex Surface as a Dispersive Element
S.V. Karpeev, S.N. Khonina, S.I. Kharitonov

 

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

 

DOI: 10.18287/0134-2452-2015-39-2-211-217

Full text of article: Russian language.

Abstract:
A dispersive element in the form of the diffraction grating on a convex mirror surface is investigated. The groove profile of the grating is measured and the intensity distribution between the diffraction orders is calculated as a function of wavelength for the visible spectrum. Optomechanical elements for the required alignments of the spectrometer elements are designed and fabricated. Adjustment of a prototype optical scheme is implemented and point images for three monochromatic incident wavelengths are obtained. The energy distribution between the diffraction orders and the intensity maxima positions are in agreement with the simulation results.

Keywords:
spectrometer, groove profile, energy distribution between the diffraction orders, adjustment of a prototype optical scheme.

Citation:
Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on the convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-7.

References:

  1. Mouroulis, P. Optical design of a compact imaging spectrometer for planetary mineralogy / P. Mouroulis, R.G. Sellar, D.W. Wilson, J.J. Shea, R.O. Green // Optical Engineering. – 2007. – Vol. 46(6) – P. 063001.
  2. Mouroulis, P. Convex grating types for concentric imaging spectrometers / P. Mouroulis, D.W. Wilson, P.D. Maker, R.E. Muller // Applied Optics. – 1998. – Vol. 37(31), – P. 7200-7208.
  3. Prieto-Blanco, X. Analytical design of an Offner imaging spectrometer / X. Prieto-Blanco, C. Montero-Orille, B. Cou­ce, R. de la Fuente // Optics Express. – 2006. – Vol. 14(20). – P. 9156-9168.
  4. Prieto-Blanco, X. The Offner imaging spectrometer in quadrature / X. Prieto-Blanco, C. Montero-Orille, H. Gon­zález-Nuñez, M.D. Mouriz, E.L. Lago, R. de la Fuente // Optics Express. – 2010. – Vol. 18(12). – P. 12756-12769.
  5. Lee, J.H. Optical Design of a Compact Imaging Spectrometer for STSAT3 / J.H. Lee, T.S. Jang, H.-S. Yang, S.-W. Rhee // Journal of the Optical Society of Korea. – 2008. – Vol. 12(4). – P. 262-268.
  6. Kazanskiy, N.L. Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics / N.L. Kazanskiy, S.I. Kharitonov, A.V. Karsakov, S.N. Kho­nina // Computer Optics. – 2014. – Vol. 38(2). – P. 271-280.
  7. Doskolovich, L.L. On the compensation of the diffraction orders overlap effect in the Offner spectrometer / L.L. Doskolovich, E.A. Bezus, D.A. Bykov // Computer Optics. – 2014. – Vol. 38(4). – P. 777-781.
  8. Kazanskiy, N.L. Modeling the performance of a spacebarne hyperspectrometer based on the Offner scheme / N.L. Ka­zanskiy, S.I. Kharitonov, L.L. Doskolovich, A.V. Pavelyev // Computer Optics. – 2015. – Vol. 39(1). – P. 70-76.
  9. Berezny, A.E. Computer-generated holographic optical ele­ments produced by photolithography / A.E. Berezny, S.V. Karpeev, G.V Uspleniev // Optics and Lasers in Engineering. – 1991. – Vol. 15(5). – P. 331-340.
  10. Znamenskyi, M.Yu. Transmissive threaded diffraction gratings for ultraviolet, visible and infrared regions of the spectrum / M.Yu. Znamenskyi, Ya.K. Lukashevich, A.F. Skochilov, N.A. Fedulova // Journal of Optical Technology. – 2014. – Vol. 3. – P. 51-54.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20