A four-zone transmission azimuthal micropolarizer with phase shift
S.S. Stafeev, M.V. Kotlyar, L. O’Faolain, A.G. Nalimov, V.V. Kotlyar

 

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,
S.P. Korolyov Samara State Aerospace University, Samara, Russia,

SUPA, School of Physics and Astronomy of the University of St. Andrews, Scotland

Full text of article: Russian language.

Abstract:
A binary subwavelength four-zone transmission element with metasurface for simultaneously controlling the polarization and phase of laser light was synthesized and characterized. The element was manufactured in a silicon film spattered on a glass substrate. It performs the near-field conversion of a linearly polarized incident laser beam into a near azimuthally polarized beam with a phase shift of π at diametrically opposite points of the beam. In the far field, the converted beam produces an intensity maximum at the center, as opposed to the minimum from the azimuthally polarized beam.

Keywords:
transmission subwavelength micropolarizer, azimuthally polarized light, metasurface, phase shift.

Citation:
Stafeev SS, Kotlyar MV, O’Faolain L, Nalimov AG, Kotlyar VV. A four-zone transmission azimuthal micropolarizer with phase shift. Computer Optics 2016; 40(1): 12-8. DOI: 10.18287/2412-6179-2016-40-1-12-18.

References:

  1. Zhao Y, Liu X, Alu A. Recent advances on optical metasurfaces. J Opt 2014; 16: 123001. – DOI: 10.1088/2040-8978/16/12/123001.
  2. Zhao Y, Alu A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett 2013; 13(3): 1086-1091. – DOI: 10.1021/nl304392b.
  3. Monticone F, Estakhri NM, Alu A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013; 110: 203903. – DOI: 10.1103/PhysRevLett.110.203903.
  4. Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12(9): 4932-4936. – DOI: 10.1021/nl302516v.
  5. Huang C. Efficient and broadband polarization conversion with the coupled metasurfaces. Opt Express 2015; 23(25): 32015-32024. – DOI: 10.1364/OE.23.032015.
  6. Veysi M, Guclu C, Boyraz O, Capolino F. Thin anisotropic metasurfaces for simultaneous light focusing and polarization ma-nipulation. J Opt Soc Am B 2015; 32(2): 318-323. – DOI: 10.1364/JOSAB.32.000318.
  7. Zhang Z, Dong F, Chwng T, Qui K, Zhang Q, Chu W, Wu X. Nano-fabricated pixelated micropolarizer array for visible im-aging polarimetry. Rev Sci Instr 2014; 85(10): 105002. – DOI: 10.1063/1.4897270.
  8. Bomzon Z, Kleiner V, Hasman E. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett 2001; 26(18): 1424-1426. – DOI: 10.1364/OL.26.001424.
  9. Bomzon Z, Biener G, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt Lett 2002; 27(5): 285-287. DOI: – 10.1364/OL.27.000285.
  10. Lerman GM, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Opt Lett 2008; 33(23): 2782-2784. – DOI: 10.1364/OL.33.002782.
  11. Käempfe T, Sixt P, Renaud D, Lagrange A, Perrin F, Parriaux O. Segmented subwavelength silicon gratings manufactured by high productivity microelectronic technologies for linear to radial/azimuthal polarization conversion. Optical Engineering 2014; 53(10): 107105. – DOI:10.1117/1.OE.53.10.107105.
  12. Ghadyani Z, Vartiainen I, Harder I, Iff W, Berger A, Lindlein N, Kuittinen M. Concentric ring metal grating for generating radially polarized light. Appl Opt 2011; 50(16): 2451-2457. – DOI: 10.1364/AO.50.002451.
  13. Nalimov AG, O'Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelenghth mictooptics element for polarization conversion from linear to radial. Computer Optics 2014; 38(2): 229-236.
  14. Stafeev SS, O’Faolain L, Shanina MI, Nalimov AG, Kotlyar VV. Sharp focusing of a mixture of radially and linearly polarized beams using a binary microlens. Computer Optics 2014; 38(4): 606-613.
  15. Stafeev SS, O'Faolain L, Kotlyar VV, Nalimov AG. Tight focus of light using micropolarizer and microlens. Appl Opt 2015; 54(14): 4388-4394. – DOI: 10.1364/AO.54.004388.
  16. Stafeev SS, Nalimov AG, Kotlyar MV, O’Faolain L. A four-zone reflective azimuthal micropolarizer. Computer Optics 2015; 39(5): 709-715. DOI: 10.18287/0134-2452-2015-39-5-709-715.
  17. Hao X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally polarized beam. Opt Lett 2010; 35(23): 3928-3930. – DOI: 10.1364/OL.35.003928.
  18. De Boer JF, Milner TE. Review of polarization sensitive optical coherence tomography and Stokes vector determination. Journal of Biomedical Optics 2002; 7(3): 359-371. – DOI: 10.1117/1.1483879.
  19. Li X, Chon JWM, Wu S, Evans RA, Gu M. Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo) anisole doped polymer. Opt Lett 2007; 32(3): 277-279. – DOI: 10.1364/OL.32.000277.
  20. Noto M, Keng D, Teraoka I, Arnold S. Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes. Biophysical Journal 2007; 92(12): 4466-4472. – DOI: 10.1529/biophysj.106.103200.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20