Resonant photonic-crystal structures with a diffraction grating for refractive index sensing
E.A. Kadomina, E.A. Bezus, L.L. Doskolovich

 

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,
Samara State Aerospace University, Samara, Russia

Full text of article: Russian language.

Abstract:
A new planar configuration of an optical refractive index sensor based on the excitation of Bloch surface waves and containing a diffraction grating and a photonic crystal is proposed and numerically investigated. The structure under analysis is compared with the conventional sensor based on the Kretschmann configuration for two varying parameters: the angle and wavelength of  incident light. The results of the study may find application in the design of novel on-chip refractive index sensors and spectral filters.

Keywords:
photonic crystal, diffraction grating, resonance domain, Bloch surface wave, optical sensor, Maxwell's equations, Fourier modal method.

Citation:
Kadomina EA, Bezus EA, Doskolovich LL. Resonant photonic-crystal structures with a diffraction grating for refractive index sensing. Computer Optics 2016; 40(2): 164-72. DOI: 10.18287/2412-6179-2016-40-2-164-172.

References:

  1. Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits? J Opt Express 2009; 17(19): 16505-16517.
  2. Shankaran DR, Gobi KV, Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B 2007; 121(1): 158-177.
  3. Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 2003; 377(3): 528-539.
  4. Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensors and Actuators B 2012; 174: 292-298.
  5. Li Y, Yang T, Pang Z, Pang Z, Du G, Song S, Han S. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry. Opt Express 2014; 22(18): 21403-21410.
  6. Sinibaldi A, Fieramosca A, Rizzo R, Anopchenko A, Danz N, Munzert P, Magistris C, Barolo C, Michelotti F. Combining label-free and fluorescence operation of Bloch surface wave optical sensors. Opt Lett 2014; 39(10): 2947-2950.
  7. Rizzo R, Danz N, Michelotti F, Maillart E, Anopchenko A, Wachter C. Optimization of angularly resolved Bloch surface wave biosensors. Opt Express 2014; 22(19): 23202-23214.
  8.  Sinibaldi A, Danz N, Anopchenko A, Munzert P, Schmieder S, Chandrawati R, Rizzo R, Rana S, Sonntag F, Occhicone A, Napione L, Panfilis SD, Stevens MM, Michelotti F. Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals. J Lightwave Technology 2015; 33(16): 3385-3393.
  9. Sinibaldi A, Rizzo R, Figliozzi G, Descrovi E, Danz N, Munzert P, Anopchenko A, Michelotti F. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt Express 2013; 21(20): 23331-23344.
  10. Chang-Hasnain CJ, Yang W. High-contrast gratings for integrated optoelectronics. Adv Opt Photon 2012; 4(3): 379-440.
  11. Chang-Hasnain CJ. High-contrast gratings as a new platform for integrated optoelectronics. Semicond Sci Technol 2011; 26: 014043.
  12. Bezus EA, Doskolovich LL, Bykov DA, Soifer VA. Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal. JETP Letters 2014; 99(2): 63-66.
  13. Kadomina EA, Bezus EA, Doskolovich LL. Spectrally selective near-field enhancement in a photonic crystal structure with a diffraction grating. Computer Optics 2015; 39(4): 462-468.
  14. Moharam MG, Gaylord TK, Grann EB, Pommet DA. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America A 1995; 12: 1068-1076.
  15. Moharam MG, Gaylord TK, Pommet DA, Grann EB. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. Journal of the Optical Society of America A 1995; 12: 1077-1086.
  16. Niraula M, Yoon JW, Magnusson R. Single-layer optical bandpass filter technology. Opt Lett 2015; 40(21): 5062-5065.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20