(46-2) 11 * << * >> * Русский * English * Содержание * Все выпуски

Adjusting videoendoscopic 3D reconstruction results using tomographic data
K.A. Halavataya 1, K.V. Kozadaev 1, V.S. Sadau 1

BSU – Belarusian State University,
220030, Minsk, Belarus, Nezavisimosti Avenue 4

 PDF, 869 kB

DOI: 10.18287/2412-6179-CO-910

Страницы: 246-251.

Язык статьи: English.

Videoendoscopic and tomographic research are the two leading medical imaging solutions for detecting, classifying and characterizing a wide array of pathologies and conditions. However, source information from these types of research is very different, making it hard to cross-correlate them. The paper proposes a novel algorithm for combining results of videoendoscopic and tomographic imaging data based on 3D surface reconstruction methods. This approach allows to align separate parts of two input 3D surfaces: surface obtained by applying bundle adjustment-based 3D surface reconstruction algorithm to the endoscopic video sequence, and surface reconstructed directly from separate tomographic cross-section slice projections with regular density. Proposed alignment method is based on using local feature extractor and descriptor algorithms by applying them to the source surface normal maps. This alignment allows both surfaces to be equalized and normalized relative to each other. Results show that such an adjustment allows to reduce noise, correct reconstruction artifacts and errors, increase representative quality of the resulting model and establish correctness of the reconstruction for hyperparameter tuning.

Ключевые слова:
image reconstruction techniques, medical and biological imaging, image processing.

Halavataya KA, Kozadaev KV, Sadau VS. Adjusting videoendoscopic 3D reconstruction results using tomographic data. Computer Optics 2022; 46(2): 246-251. DOI: 10.18287/2412-6179-CO-910.


  1. WHO report on cancer: setting priorities, investing wisely and providing care for all. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.
  2. Dremel HW. General principles of endoscopic imaging. In Book: Ernst A, Herth FJF, eds. Principles and practice of interventional pulmonology. New York, NY: Springer; 2013. DOI: 10.1007/978-1-4614-4292-9_2.
  3. Halavataya K, Sadov V. Algorithm for 3d scene reconstruction from videoendoscopic examination data [In Russian]. News of Science and Technologies 2019; 3: 10-18.
  4. Halavataya K, Sadau V. Model of image acquisition for 3d scene reconstruction from videoendoscopic imaging data [In Russian]. Polotsk State University proceedings 2019; 12: 43-49.
  5. Halavataya K. Local feature descriptor indexing for image matching and object detection in real-time applications Pattern Recognit Image Anal 2020; 30(1): 18-23. DOI: 10.1134/S105466182001006X.
  6. Kudo S, Tamura S, Nakajima T, Yamano H, Kusaka H, Watanabe H. Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointest Endosc 1996; 44(1): 8-14. DOI: 10.1016/S0016-5107(96)70222-5.
  7. Herman GT. Fundamentals of computerized tomography: Image reconstruction from projections. 2nd ed. New York: Springer; 2010. ISBN: 978-1-85233-617-2.
  8. Nagai Y, Ohtake Y, Suzuki H. Tomographic surface reconstruction from point cloud. Comput Graph 2015; 46: 55-63. DOI: 10.1016/j.cag.2014.09.034.
  9. Baek J, Pelc NJ. A new method to combine 3D reconstruction volumes for multiple parallel circular cone beam orbits. Med Phys. 2010; 37(10): 5351-5360. DOI: 10.1118/1.3484058.
  10. Basha MAA, AlAzzazy MZ, Ahmed AF, et al. Does a combined CT and MRI protocol enhance the diagnostic efficacy of LI-RADS in the categorization of hepatic observations? A prospective comparative study. Eur Radiol 2018; 28(6): 2592-2603. DOI: 10.1007/s00330-017-5232-y.
  11. Resindra A, Yusuke M, Okutomi M, Suzuki S. Whole stomach 3D reconstruction and frame localization from monocular endoscope video. IEEE J Transl Eng Health Med 2019; 7: 1-10. DOI: 10.1109/JTEHM.2019.2946802.
  12. Khan U, Yasin A, Abid M, Shafi I, Khan SA. A methodological review of 3D reconstruction techniques in tomographic imaging. J Med Syst 2018; 42(10): 190. DOI: 10.1007/s10916-018-1042-2.
  13. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis 2004; 60: 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20