
The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation… V.A. Fursov, Ye.V. Goshin, A.P. Kotov

Computer Optics, 2016, Vol. 40(5) 721

THE HYBRID CPU/GPU IMPLEMENTATION OF THE COMPUTATIONAL PROCEDURE
FOR DIGITAL TERRAIN MODELS GENERATION FROM SATELLITE IMAGES

V.A. Fursov 1, 2, Ye.V. Goshin 1, 2, A.P. Kotov 1, 2,
1 Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,

2 Samara National Research University, Samara, Russia

Abstract

In this paper a procedure of building a digital terrain model (DTM) from the satellite images is re-
searched. The procedure is based on the authors' previously developed algorithms of fast image match-
ing for building disparity maps implemented on GPUs (Graphics Processing Units). In this paper we
propose a computational procedure for constructing a DTM from the satellite stereo images. Experi-
mental studies have shown that while this procedure constructs a DTM that may be less accurate than
the one achieved with the use of the ENVI software, it offers a significantly shorter time of processing.

Keywords: digital image processing, stereo images, 3D-scene reconstruction, image matching,
CUDA-technology, ENVI.

Citation: Fursov VA, Goshin YeV, Kotov AP. The hybrid CPU/GPU implementation of the
computational procedure for digital terrain models generation from satellite images. Computer Op-
tics 2016; 40(5): 721-728. DOI: 10.18287/2412-6179-2016-40-5-721-728.

Acknowledgements: The work was funded by the Russian Science Foundation (grant #14-
31-00014).

Introduction

Building a digital terrain model (DTM) from satellite
images is one of crucial tasks of the Earth remote sensing
data (ERS) processing and analysis.

In particular, paper [1] provides the analysis and
comparison of the digital elevation models (DEM) from
high resolution QuickBird and Pleiades satellite stereo
images. Paper [2] describes generation and evaluation of
DEM from two panchromatic cameras of the Cartosat-1
satellite, which are capable of acquiring stereoscopic data
along the orbital track.

Nowadays researchers conduct their experiments not
only on satellite images, but also on synthetic one. Stud-
ies not only dedicated to real satellite images, but also to
synthetic images. E.g., paper [3] draws a comparison be-
tween DEMs generated with the use of forward, reverse
and other possible synthetic stereo pairs for different
types of topographies.

In most of papers ground control points (GCP) and / or
rational polynomial coefficients (RPC) are used for the
DEM generation, so part of our study is dedicated to in-
troduction of RPC coefficients [4, 5] into our procedure.

There is also a wide range of papers highlighting
practical use of DEM, e.g. papers [6, 7].

The software components for the DTM construction
are incorporated in most of commercial software systems
of remote sensing data processing. ENVI, PHOTOMOD
and Geomatica [8 – 10] are the best-known systems. Nev-
ertheless, there is a problem in the efficiency of the DTM
construction. As a rule, space images are of large dimen-
sions, which cause some processing problems associated
with both limited volumes of memory and computational
capability. Therefore, users have to select some relatively
small fragments in the initial images and build local ter-
rain models.

However, there is often need to solve this problem in real
time, for example, to monitor emergencies, analyze the tar-
get environment, or calculate routes, etc. Generally, GPU
computing with the use of CUDA technology is applied to

stereo reconstruction problem in cases when the number of
points of images is small but there is a constant flow of im-
ages, e.g. video from unmanned aerial vehicles [11, 12].
Conversely, in this research we have a different issue which
consists in processing of small number of large images.
Nevertheless, our computational procedure still allows us to
improve the speed of DTM construction with the use of
CUDA technology implementation [13].

In this paper we describe a procedure of DTM con-
struction from remote sensing data [14] and provide a de-
tailed description of its main stages. The main attention is
paid to the description of the distinctive features of these
stages, in comparison with the known. We also analyze
the degree of internal parallelism. Taking into account
this analysis, we propose a hybrid general procedure for
DTM construction from satellite images. In general, the
procedure is realized in the hybrid computing systems
consisting of both graphics and central processors. Our
aim is to show that the implementation of the general
procedure on hybrid CPU / GPU system provides substan-
tially higher speed of ERS data processing compared with
the software package ENVI, which comes at the cost of
occasional loss of DTM reconstruction accuracy.

1. Main stages of the procedure

The general scheme of the main stages of the consid-
ered procedure for three-dimensional DTM reconstruc-
tion from stereo satellite images is shown in Fig. 1. The
main stages of this procedure are the rectification of im-
ages, image matching (finding the corresponding points)
and determining the 3D coordinates of the DTM.

The initial data for this procedure are high-resolution
satellite images (HRSI), obtained from different perspec-
tives, as well as metadata represented in the form of a set
of RPC (Rational polynomial coefficients) [4]

(20 1) (20 1) (20 1) (20 1)
, , ,a b c d

   
. These coefficients represent a model

of image registration by a satellite camera.

()/(), ()/()T T T TY X a u b u c u d u , (1)

The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation… V.A. Fursov, Ye.V. Goshin, A.P. Kotov

722 Computer Optics, 2016, Vol. 40(5)

where

2 2 2 3 2 2

2 3 2 2 2 3

[1

]T

L P H LP LH PH

L P H PLH L LP LH

L P P PH L H P H H

u

,

X, Y are normalised coordinates of the images, and
P, L, H are normalised coordinates of a point in 3D space.

Fig. 1. The main stages of the computational procedure

Normalised coordinates P, L, H of a 3D point and the
coordinates of images X, Y are defined by the following
equations:

_ _
, ,

_ _

_ _
, ,

_ _

_
,

_

LAT OFF LONG OFF
P L

LAT SCALE LONG SCALE

x SAMP OFF y LINE OFF
X Y

SAMP SCALE LINE SCALE

h H OFF
H

H SCALE

  
 

 
 




 (2)

where LAT_OFF, LAT_SCALE, LONG_OFF,
LONG_SCALE, H_OFF and H_SCALE are the
normalized parameters of the ground point coordinates,
while SAMP_OFF, SAMP_SCALE, LINE_OFF and
LINE_SCALE are the normalised parameters of the image
point coordinates.

Rectification of stereo images is a transformation in
which the corresponding points in the images are ar-
ranged in the same rows. The aim of the rectification
stage is to simplify stereo images processing, in particu-
lar, the search of the corresponding points. It is also more
convenient to build a disparity (horizontal parallax) map,
as in this case there is a disparity in one coordinate only.

The main problem in the construction of the DTM pro-
cedure is the image matching, in particular, determining the
corresponding points on different views. To apply methods
for image matching, the images are typically rectified (the
rows of the images are brought to the same orientation).

To construct the DTM from stereo satellite images,
three well-known classes of image matching methods are
applied: local, global and semi-global [5]. To match the
images, for each point (x0, y0) in the first image a corre-
sponding point (x0 + x, y0 + y) in the second image is
searched. In the case of rectified images, one-dimensional
search can be used instead of the two-dimensional search.
In this case, the problem is reduced to calculating the dis-
parity between the images.

As a result of the matching, a disparity map can be
formed, which is a visualization of the obtained shifts: the
more the corresponding point of the initial image is shift-
ed, the brighter each pixel of the disparity map is.

To process the rectified images, we have introduced
RPC conversion into the procedure. Since RPC are speci-
fied for the initial images, it is necessary to calculate new
coefficients for the rectified images according to the pro-
jective transformations applied to both images.

Calculation of three-dimensional points in the global
coordinate system from the obtained corresponding
points is performed using RPC for the rectified images.
To do this, a nonlinear least-squares method is normally
used [15].

Next, we give a more detailed, but a rather brief de-
scription of mathematical models and algorithms to be
implemented at these stages of procedure. The stage of
image matching is accompanied by a description of paral-
lel implementation of the proposed algorithm. The final
section provides examples of the procedure implementa-
tion and the performance characteristics achieved.

2. Rectification and RPC converting

The initial data for this stage are a pair of satellite im-
ages recorded at different angles sharing some area.

There are several approaches to the rectification: us-
ing the known shooting parameters (exact model), using
the known fractional-rational image function (RFM, ra-
tional functional model) specifying the correspondence
between the image coordinates and three-dimensional
point in space [16], and using known or found corre-
sponding points between the images (projective, polyno-
mial model).

Key points are formed using the coefficients of the ra-
tional function (RPC), which are part of the metadata. Af-
ter building the set of key points, the fundamental matrix
is calculated.

The corresponding points on two projections are con-
nected by a 3 × 3 fundamental matrix F [17], in particular,
for the points with the coordinates set by 3 × 1 vectors
mL, mR: mL = [xL, yL, 1]T, mR = [xR, yR, 1]R the following
condition is met:

0T
R L m Fm , (3)

where

11 12 13

21 22 23

31 32 33

F F F

F F F

F F F

 
   
  

F . (4)

Equation (2) defines the epipolar constraints on per-
missible coordinates of corresponding points in stereo

The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation… V.A. Fursov, Ye.V. Goshin, A.P. Kotov

Computer Optics, 2016, Vol. 40(5) 723

images. It is obvious that it is necessary to know the exact
fundamental matrix to take these constraints into account.

To determine the parameters of the fundamental ma-
trix, a system of linear equations is solved by least
squares method with at least eight given corresponding
points. The corresponding points in the two images will
be in the same rows if the fundamental matrix has the fol-
lowing form:

0 0 0

0 0 1

0 1 0

 
    
  

F . (5)

To achieve this, a particular projective transformation
is applied to both images [18]. For the first and the second
images, these transformation matrices are denoted as HL
and HR, respectively, and satisfy the following equation:

 () 0T
R R L L H m F H m . (6)

As the result of the rectification, the corresponding
points will be in the same rows.

As previously mentioned, the initial RPC cannot be ap-
plied to the obtained rectified images. Therefore, we need to
calculate additional coefficients H11H12…H33 based on the
projective transformation matrix H. We can rewrite the
equations (2) with these coefficients as following:

11 12 13

31 32 33

21 22 23

31 32 33

* _ _ ,

* _ _ ,

H x H y H
x

H x H y H

X SAMP SCALE SAMP OFF

H x H y H
y

H x H y H

Y LINE SCALE LINE OFF

 
 

 

 
 

 
 

 

 (7)

where matrix H is equal to HR for point mL and to HL for
point mR.

3. Stereo matching

We use the local method of image matching consist-
ing in finding the shifts by comparing the distribution
functions of brightness on fragments of the left and right
stereo images. For each pixel of the left stereo image we
search for the corresponding pixel in the right image
within a local window.

The ENVI software package implements the local
method, in which the criterion for the similarity of pixels
is a normalized cross-correlation between the brightness
values of the pixels in the left and right images.

Another modification of the local method taking into
account epipolar constraints via penalty coefficients is
implemented in paper [19]. In this study, we do not use
the penalty coefficients, because the local method is im-
plemented to the rectified images. Therefore, the search
area is focused on the epipolar lines, at small intervals
vertically.

Here is a detailed description of the implemented lo-
cal method. Let us denote the coordinates of the points in
the first image as (x0, y0), and the coordinates of the cor-
responding points in the second image as
(x0 + x, y0 + y), where x and y are relative shifts of
the coordinates x0 and y0, respectively. Let IL(x, y) and
IR(x, y) be the intensity distribution function of the counts
in these images. Matching algorithm consists in detection
for each point (x0, y0) in the first image a corresponding
point (x0 + x, y0 + y) in the second image by maximiz-
ing the normalized cross correlation coefficient
E(x0, y0, x, y):

 
   

 

 
 

 
 

   

0 0

0 0 0 0

0 0 0 0

, ,

0 0 2 2

, , , ,

, , , ,

(,) (,)

, , , ,

(,) (,)

1 1
(,), (,),

L L R R
x y D x y

L L R R
x y D x y x y D x y

L L R R
x y D x y x y D x y

I x y I I x x y y I

E x y x y

I x y I I x x y y I

I I x y I I x x y y
N N



 

 

     

  
     

     



 

 

 (8)

where D(x0, y0) is an area around point (x0, y0), N is a
number of pixels in the area D(x0, y0).

Parallel implementation of the described algorithm is
shown in Fig. 2. The interaction between CPU and GPU is
presented in the form of the interaction between the three
blocks. The first and third blocks include routines that are
only executed on CPU. The results of their implementation
are used in the second block to run CUDA kernels on GPU.

In the first block a pyramid of images is generated
which is used for further image matching. For better vis-
ualization, Fig. 2 shows a three-level pyramid of images
(Block 1) for a pair of rectified images. The pyramid is
formed as a set of images obtained by decreasing the res-
olution twice in both coordinates. Thus, an image with a
2N times smaller resolution than the original one is
formed at the Nth level of the pyramid.

After the pair of images for the third level of the pyr-
amid has been formed, the routines in the second block
begin. These routines process the image of the third level
of the pyramid with zero initial shifts.

When the routines in CUDA kernel have been com-
pleted, relative shifts for the left image are formed as an
array. After copying the array from GPU memory to
RAM, they are saved as an image. This image is a dispar-
ity map, which is scaled for all levels of the pyramid in
Block 3 (see Fig. 3).

At the next run of CUDA kernel the rectified images
from the second level of the pyramid and the initial
shifts from the previous run are used. The values of the
initial shifts coordinates are doubled (Block 3). The
number of CUDA kernel runs depends on the number of
pyramid levels.

The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation… V.A. Fursov, Ye.V. Goshin, A.P. Kotov

724 Computer Optics, 2016, Vol. 40(5)

Global memory on GPU is allocated only once for all
operations. The total amount of the allocated memory is
equal to the number of pixels of the left image for the N-
level pyramid × (2 × 16 bit + 64 bit). This is because the ini-
tial image pixel depth is 16 bits, and the matrix that holds the
relative horizontal and vertical shifts comprises two float

values in each element of the matrix. Memory deallocation
on the GPU is performed after all the calculations have been
completed. To run CUDA kernel on the Nth level of the pyr-
amid, the following parameters are used: mesh size, block
size, number of threads, image size, the size of the search ar-
ea and the size of the processing window.

Fig. 2. CPU/GPU interaction for a three-level pyramid

Fig. 3. Block of calculations on GPU

Before running CUDA kernel the required data are
copied from the RAM memory to global memory of a
video card. Memory for the results storage is also allocat-
ed on the graphics card. Each thread calculates the Eu-
clidean norm for the two selected descriptors. Descriptor
of a given point is a feature vector of the image fragment

with its centre in the desired corresponding point. To find
the corresponding point, it is necessary to calculate the
Euclidean norm for all points descriptors selected in the
search area as possibly corresponding.

The number of the created threads equals to the size
of the image (in pixels).

Fig. 4 shows the enlarged scheme of the calculations,
carried out by one thread. In Fig. 3 this computation
block is identified as Block for calculation of the thread.
Each thread performs calculations independently of the
other threads. This embodiment allows us to avoid the re-
dundant data array formation on GPU. Consecutive com-
paring of the Euclidean norms on CPU is also omitted.

After determining the maximum normalized cross
correlation coefficient, the relative shift is determined
on CPU.

4. 3D model calculation

After the image matching, for each pair of corre-
sponding points we can calculate a point in 3D space. To
do this, we can use the method described in paper [15].
To calculate the desired three-dimensional coordinates,
alongside with the coordinates of the corresponding
points, we use meta-information about the rational func-
tion coefficients (RPC). The initial data for the consid-

The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation… V.A. Fursov, Ye.V. Goshin, A.P. Kotov

Computer Optics, 2016, Vol. 40(5) 725

ered approach consist of terrain images obtained from
different angles, and metadata in the form of an RPC set
[4]

(20 1) (20 1) (20 1) (20 1)
, , ,

   
a b c d , which represent a model of im-

age formation by a satellite camera. On the basis of these
data, we obtain the following system of nonlinear equa-
tions for the left and right images (indicees L and R stand
for the left and right images, respectively):

(, ,)
(, ,) ,

(, ,)

(, ,)
(, ,) ,

(, ,)

(, ,)
(, ,) ,

(, ,)

(, ,)
(, ,) ,

(, ,)

T
YL L

L L T
YL L

T
XL L

L L T
XL L

T
YR R

R R T
YR R

T
XR R

R R T
XR R

N P L H
Y g h

D P L H

N P L H
X f h

D P L H

N P L H
Y g h

D P L H

N P L H
X f h

D P L H

    

    

    

    

a u

b u

c u

d u

a u

b u

c u

d u

 (9)

where

0 1 2 3 4

2 2 2
5 6 7 8 9

3 2 2
10 11 12 13

2 3 2
14 15 16

2 2 3
17 18 19

(, ,)

,

YLN P L H a a L a P a H a LP

a LH a PH a L a P a H

a PLH a L a LP a LH

a L P a P a PH

a L H a P H a H

    

    

   

  

  

 (10)

0 1 2 3 4

2 2 2
5 6 7 8 9

3 2 2
10 11 12 13

2 3 2
14 15 16

2 2 3
17 18 19

(, ,)

,

YLD P L H b b L b P b H b LP

b LH b PH b L b P b H

b PLH b L b LP b LH

b L P b P b PH

b L H b P H b H

    

    

   

  

  

 (11)

0 1 2 3 4

2 2 2
5 6 7 8 9

3 2 2
10 11 12 13

2 3 2
14 15 16

2 2 3
17 18 19

(, ,)

,

XLN P L H c c L c P c H c LP

c LH c PH c L c P c H

c PLH c L c LP c LH

c L P c P c PH

c L H c P H c H

    

    

   

  

  

 (12)

0 1 2 3 4

2 2 2
5 6 7 8 9

3 2 2
10 11 12 13

2 3 2
14 15 16

2 2 3
17 18 19

(, ,)

.

XLD P L H d d L d P d H d LP

d LH d PH d L d P d H

d PLH d L d LP d LH

d L P d P d PH

d L H d P H d H

    

    

   

  

  

 (13)

Similar expressions for NYR(P, L, H), DYR(P, L, H),
NXR(P, L, H), DХR(P, L, H) differ from the above written
ones by the values of their coefficients.

The algorithm for the solution of the nonlinear system
of equations (6) enables us to find the 3D point coordi-
nates P, L, H in the global coordinate system. This algo-
rithm is performed in two steps.

Step 1. The initial values of ground coordinates are
calculated. The distortions caused by the optical projec-
tion can be represented by the ratios of first-order terms
in the RPC. Excluding the RPC of high order, we can

write the functions transforming the object coordinates
into pixel coordinates as follows:

0 0 0
0 1 2 3

0 0 0
0 1 2 3

0 0 0
0 1 2 3

0 0 0
0 1 2 3

,

,

L

L

a a L a P a H
Y

b b L b P b H

c c L c P c H
X

d d L d P d H

  


  

  


  

 (14)

where (ak, bk, ck, dk)k = 0,…, 3 are first order RPC. Similar
expressions can be written for XR and YR.

Fig. 4. Scheme of the computation on one thread at CUDA

kernel run

These equations can be transformed into the following
equation groups:

0 0
0 0 1 1 2 2

0
3 3

0 0
0 0 1 1 2 2

0
3 3

() () ()

() 0,

() () ()

() 0.

a b X a b X L a b X P

a b X H

c d Y c d Y L c d Y P

c d Y H

     

  

     

  

 (15)

Needless to say, we only need to know the first order
RPC of two or more images to calculate the initial object
coordinates (P0, L0, H0) either from all the above men-
tioned equations or from only three of them, two of which
involve Y and one X.

Step 2. The final object coordinates are calculated. By
performing a Taylor expansion, the observation equations
can be written as

0 0 0

0 0 0

0 0 0

0 0 0

(, ,)
,

(, ,)

(, ,)
,

(, ,)

YL
L

YL

XL
L

XL

N P L H g g g
Y P L H

P L HD P L H

N P L H f f f
X P L H

P L HD P L H

  
      

  

  
      

  

(16)

and the final object coordinates can be obtained with the
use of least square adjustment.

Our implementation of this algorithm uses data de-
composition for parallelism executing a single instruction
on multiple data (SIMD). We take the algorithm of sys-
tem solution (10) described in the previous section as the
single instruction. It is justified by the fact that the calcu-
lations on each thread are performed independently.

The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation… V.A. Fursov, Ye.V. Goshin, A.P. Kotov

726 Computer Optics, 2016, Vol. 40(5)

The computation time of a serial C++ algorithm mainly
depends on such characteristics of a processor as its clock
rate and instructions. Basically, to execute such code in
IDE Microsoft Visual Studio, a developer only needs to
write the code, and command line parameters are generated
automatically by integral means of Visual Studio. In case
of parallel implementation of CUDA algorithm we need to
take into consideration the characteristics shown in the Ta-
ble 1. The following features serve as restrictions for the
implementation and CUDA kernel launch.

Table 1. CUDA Driver Version and GeForce
GTX 750 Ti specifications

CUDA Driver Version / Runtime Version 7.5 / 7.5
CUDA Capability Major/Minor version
number

5.0

Streaming Multiprocessors (SM) count 5
Total amount of global memory 2048 MB
Total amount of constant memory 65536 bytes
Total number of registers available per block 65536 bytes
Maximum number of threads per
multiprocessor

2048

To find the solution of the system (10) we used the fol-
lowing non-atomic operations: vector multiplication, dot
product and matrix inversion. In CPU and GPU implementa-
tion these operations are written in C++ without the use of
linear algebra libraries with a view to higher efficiency.

The speeding-up s of our CUDA algorithm in compari-
son with the serial one can be estimated by the formula

kernel()/HtoD DtoH ENVIs t t t t   . (17)
This formula takes into account communication time

between CPU and GPU. Time of input data transfer from
CPU memory into GPU memory is denoted as tHtoD, time
of CUDA kernel output transfer from GPU memory into
CPU memory is denoted as tDtoH, CUDA kernel computa-
tion time as tkernel and ENVI software application compu-
tation time as tENVI.

CUDA kernel computation time depends on the pa-
rameters defined at launch. The parameters were chosen
so that the graphic card occupancy was maximum. Occu-
pancy is a ratio of the executed threads to maximum
number of threads per streaming multiprocessor (SM).

Using NVIDIA Visual Profiler we calculated that 236
registers are required to execute a single thread. Consequent-
ly, one SM cannot execute more than 277 threads. Since the
block size must be divisible by 32, one block cannot contain
more than 256 threads. Thus, CUDA occupancy is equal to
256 / 2048 = 0,125. Since the graphic card has only five SM,
the peak graphic card occupancy, in terms of this GPU im-
plementation, is achieved with 5 × 256 threads. Execution of
that many threads provides linear speeding-up. Experimental
results are shown in Table 2.

Table 2. 3D coordinates calculation
for 12000 × 12000 pairs of corresponding points

ENVI computation time (milliseconds) 800 × 103
CUDA kernel computation time (milliseconds) 1489
GPU memory copy time (milliseconds) 1471
Total GPU computation time (milliseconds) 2960
Speeding-up 270

5. Experimental results

The stereo pairs obtained from satellites IRS-P5 with a
spatial resolution of 2.5 meters were chosen as the initial
data. Stereopair IRS-P5 (Cartosat-1) was obtained on Jan-
uary 30, 2008. The initial images are shown in Fig. 5.

a) b)
Fig. 5. Initial images: a) left, b) right

Based on the ENVI matching algorithm, the three-
dimensional model was built. On the resulting model
(Fig. 6a)) the mountains and the terrain are seen clearly.
Fig. 6b) shows a disparity map generated using the pro-
posed hybrid CPU/GPU procedure (Fig. 1).

a) b)
Fig. 6. Disparity map: a) ENVI, b) proposed parallel algorithm

DEMs shown in Fig. 7a, b were generated for the
above mentioned regions of the disparity map. In order to
compare these DEMs, the proximity measure offered in
paper [20] was calculated. In particular, we calculated ele-
vation difference on the preset significance level 95 % (so-
called linear error, LE95) which was equal to 8.64 meters.

Fig. 7 shows a three-dimensional terrain model ob-
tained after image matching.

a)

b)
Fig. 7. 3D-surface: a) ENVI, b) proposed parallel algorithm

Table 3 shows the results of comparative studies of
the implementation times of the matching algorithm
ENVI-5.0 software package and the proposed parallel al-
gorithm on the GPU at different numbers of pyramid lev-
els (the data were obtained using GeForce GTX 750 Ti,
and Intel Core i7-6700K, 16GB DDR4, OS Windows
10). Rectified images with the same size of
12000 × 12000 pixels were used in the experiments.

The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation… V.A. Fursov, Ye.V. Goshin, A.P. Kotov

Computer Optics, 2016, Vol. 40(5) 727

As it can be seen from the table, the time of
CPU/GPU method implementation for the resolution of
219 × 219 pixels is not given. This is because the pyra-
mid used within the proposed approach is one level less.
The implementation time for the CPU / GPU is given in
milliseconds. The proposed procedure calculates the
corresponding points several orders of magnitude faster
than ENVI-5.0 software. This effect is caused by several

reasons. Firstly, ENVI is a package comprising a lot of
modules for a wide range of applications. Our develop-
ment is aimed at solving one particular problem of this
spectrum. Secondly, ENVI is written in a programming
language IDL. Our parallel implementation uses CUDA
technology and is written in C++ language. Thus, our
development is aimed at the specific task and uses mod-
ern technology.

Table 3. Obtained experimental results

Pyramid level 1 2 3 4 5 6 7
Image resolution in pixels 219 × 219 438 × 438 875 × 875 1750 × 1750 3500 × 3500 6000 × 6000 12000 × 12000
Implementation time of the ENVI
method (in milliseconds)

1.1 × 103 1.87 × 103 7.44 × 103 28.24 × 103 112.54 × 103 441.27 × 103 1806.5 × 103

Implementation time of the CPU / GPU
method (in milliseconds)

- 6.3 20.2 70.4 252.9 925.3 3390.1

Conclusion

Experimental results demonstrate that the developed
general procedure provides the 3D DTM quality compa-
rable to that achieved with the use of the ENVI-5.0 soft-
ware. However, implementation time of the proposed
procedure of the same pair of images with dimensions of
12000 × 12000 is about 300 times less. Unfortunately,
there are currently no representative databases of 3D
model test sets with corresponding stereo images. There-
fore, further research will be aimed at the development of
methods of test images and 3D scene models formation,
and the procedure verification in order to obtain objective
statistical evaluation of DTM quality.

References

[1] Qayyum A, Malik AS, Muhammad Saad MNB. Compari-
son of digital elevation models based on high resolution
satellite stereo imagery. International Conference on Space
Science and Communication (IconSpace) 2015: 203-208.

[2] Pandey P, Venkataraman G. Generation and evaluation of
Cartosat-1 DEM for Chhota Shigri Glacier, Himalaya. In-
ternational Journal of Geomatics and Geosciences 2012;
2(3): 704.

[3] Giribabu D, Rao SS, Murthy YK. Improving Cartosat-1
DEM accuracy using synthetic stereo pair and triplet.
ISPRS journal of photogrammetry and remote sensing
2013; 77: 31-43. DOI: 10.1016/j.isprsjprs.2012.12.005.

[4] Fraser CS, Hanley HB. Bias-compensated RPCs for sensor
orientation of high-resolution satellite imagery. Photo-
grammetric Engineering & Remote Sensing 2005; 71(8):
909-915. DOI: 10.14358/PERS.71.8.909.

[5] Grodecki J, Dial G. Block adjustment of high-resolution
satellite images described by rational polynomials. Photo-
grammetric Engineering & Remote Sensing 2003; 69(1):
59-68. DOI: 10.14358/PERS.69.1.59.

[6] Paradella WR, Cheng P. Using Geoeye-1 stereo data in
mining application: automatic DEM generation. Geoinfor-
matics 2013; 16: 10-12.

[7] Zhou Y, Parsons B, Elliott JR, Barisin I, Walker RT. As-
sessing the ability of Pleiades stereo imagery to determine
height changes in earthquakes: A case study for the El
Mayor-Cucapah epicentral area. Journal of Geophysical

Research: Solid Earth 2015; 120(12): 8793-8808. DOI:
10.1002/2015JB012358.

[8] User guide ENVI. Source:
https://www.exelisvis.com/portals/0/pdfs/envi/DEM_Extr
action_Module.pdf.

[9] User guide PHOTOMOD. Source:
http://www2.racurs.ru/download/docs/rus/DEM.pdf.

[10] User guide Geomatica. Source:
http://www.pcigeomatics.com/pdf/geomatica/tutorials/Liv
e_DEM_Editing.pdf.

[11] Gomez-Balderas J-E, Houzet D. A 3D reconstruction from
real-time stereoscopic images using GPU. Conference on
Design and Architectures for Signal and Image Processing
(DASIP 2013) 2013: 253-258.

[12] Pollefeys M, Nistér D, Frahm JM, Akbarzadeh A, Mordo-
hai P, Clipp B, Engels C, Gallup D, Kim S-J, Merrell P,
Salmi C, Sinha S, Talton B, Wang L, Yang Q, Stewé-
nius H, Yang R, Welch G, Towles H. Detailed real-time
urban 3d reconstruction from video. International Journal
of Computer Vision 2008; 78(2-3): 143-167. DOI:
10.1007/s11263-007-0086-4.

[13] Kotov AP, Fursov VA, Goshin EV. Technology for fast
3D-scene reconstruction from stereo images. Computer
Optics 2015; 39(4): 600-605. DOI: 10.18287/0134-2452-
2015-39-4-600-605.

[14] Baltsavias EP, Stallmann D. SPOT stereo matching for
DTM generation. Proc SPIE 1993; 1944: 152-163. DOI:
10.1117/12.155800.

[15] Kadomcev BB. Dynamics and the Information. Izbrannye
trudy: in 6 volumes [In Russian]. Moscow: “Fizmatlit”
Publisher; 2003: 2; 508-515.

[16] Rational Functional Model. Source:
http://geotiff.maptools.org/STDI-0002_v2.1.pdf.

[17] Forsyth DA, Ponce J. Computer vision: A modern ap-
proach. Prentice Hall Professional Technical Reference;
2002. ISBN: 0-130-85198-1.

[18] Hartley RI. Theory and practice of projective rectification.
International Journal of Computer Vision 1999; 35(2):
115-127. DOI: 10.1023/A:1008115206617.

[19] Fursov VA, Goshin EV. Information technology for digital
terrain model reconstruction from stereo images. Computer
Optics 2014; 38(2): 335-342.

[20] Jacobsen K. DEM generation from high resolution satellite
imagery. Photogrammetrie-Fernerkundung-
Geoinformation 2013; 5: 483-493.

The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation… Fursov V.A., Goshin Ye.V., Kotov A.P.

728 Computer Optics, 2016, Vol. 40(5)

Authors’ information

Vladimir Alekseyevich Fursov is Doctor of Engineering Science, Professor, head of Supercomputers and General
Informatics sub-department of Samara University, leading researcher. Research interests are development of the theory
of estimation on small number of observations, development of methods of image processing and training to pattern
recognition, development of high-performance parallel methods both algorithms of image processing and pattern recog-
nition oriented on application of multiprocessor computing systems. E-mail: fursov@ssau.ru .

Yegor Vyacheslavovich Goshin, Candidate of Engineering Sciences. Research interests are image processing,

recognition algorithms, parallel computations and stereovision. E-mail: goshine@yandex.ru .

Anton Petrovich Kotov, Master of Applied Mathematics and Computer Science. Currently studies at Samara Uni-

versity. Research interests are image processing, recognition algorithms, 3D-scene reconstruction, and parallel compu-
tations. E-mail: antonykotov@gmail.com .

Code of State Categories Scientific and Technical Information (in Russian – GRNTI)): 28.23.15, 50.41.25, 89.57.35.

Received September 17, 2016. The final version – October 31, 2016.

