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Abstract 

In this paper a procedure of building a digital terrain model (DTM) from the satellite images is re-
searched. The procedure is based on the authors' previously developed algorithms of fast image match-
ing for building disparity maps implemented on GPUs (Graphics Processing Units). In this paper we 
propose a computational procedure for constructing a DTM from the satellite stereo images. Experi-
mental studies have shown that while this procedure constructs a DTM that may be less accurate than 
the one achieved with the use of the ENVI software, it offers a significantly shorter time of processing. 
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Introduction 

Building a digital terrain model (DTM) from satellite 
images is one of crucial tasks of the Earth remote sensing 
data (ERS) processing and analysis.  

In particular, paper [1] provides the analysis and 
comparison of the digital elevation models (DEM) from 
high resolution QuickBird and Pleiades satellite stereo 
images. Paper [2] describes generation and evaluation of 
DEM from two panchromatic cameras of the Cartosat-1 
satellite, which are capable of acquiring stereoscopic data 
along the orbital track. 

Nowadays researchers conduct their experiments not 
only on satellite images, but also on synthetic one. Stud-
ies not only dedicated to real satellite images, but also to 
synthetic images. E.g., paper [3] draws a comparison be-
tween DEMs generated with the use of forward, reverse 
and other possible synthetic stereo pairs for different 
types of topographies. 

In most of papers ground control points (GCP) and / or 
rational polynomial coefficients (RPC) are used for the 
DEM generation, so part of our study is dedicated to in-
troduction of RPC coefficients [4, 5] into our procedure.  

There is also a wide range of papers highlighting 
practical use of DEM, e.g. papers [6, 7]. 

The software components for the DTM construction 
are incorporated in most of commercial software systems 
of remote sensing data processing. ENVI, PHOTOMOD 
and Geomatica [8 – 10] are the best-known systems. Nev-
ertheless, there is a problem in the efficiency of the DTM 
construction. As a rule, space images are of large dimen-
sions, which cause some processing problems associated 
with both limited volumes of memory and computational 
capability. Therefore, users have to select some relatively 
small fragments in the initial images and build local ter-
rain models. 

However, there is often need to solve this problem in real 
time, for example, to monitor emergencies, analyze the tar-
get environment, or calculate routes, etc. Generally, GPU 
computing with the use of CUDA technology is applied to 

stereo reconstruction problem in cases when the number of 
points of images is small but there is a constant flow of im-
ages, e.g. video from unmanned aerial vehicles [11, 12]. 
Conversely, in this research we have a different issue which 
consists in processing of small number of large images. 
Nevertheless, our computational procedure still allows us to 
improve the speed of DTM construction with the use of 
CUDA technology implementation [13].  

In this paper we describe a procedure of DTM con-
struction from remote sensing data [14] and provide a de-
tailed description of its main stages. The main attention is 
paid to the description of the distinctive features of these 
stages, in comparison with the known. We also analyze 
the degree of internal parallelism. Taking into account 
this analysis, we propose a hybrid general procedure for 
DTM construction from satellite images. In general, the 
procedure is realized in the hybrid computing systems 
consisting of both graphics and central processors. Our 
aim is to show that the implementation of the general 
procedure on hybrid CPU / GPU system provides substan-
tially higher speed of ERS data processing compared with 
the software package ENVI, which comes at the cost of 
occasional loss of DTM reconstruction accuracy. 

1. Main stages of the procedure 

The general scheme of the main stages of the consid-
ered procedure for three-dimensional DTM reconstruc-
tion from stereo satellite images is shown in Fig. 1. The 
main stages of this procedure are the rectification of im-
ages, image matching (finding the corresponding points) 
and determining the 3D coordinates of the DTM. 

The initial data for this procedure are high-resolution 
satellite images (HRSI), obtained from different perspec-
tives, as well as metadata represented in the form of a set 
of RPC (Rational polynomial coefficients) [4] 
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of image registration by a satellite camera. 
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X, Y are normalised coordinates of the images, and 
P, L, H are normalised coordinates of a point in 3D space. 

 
Fig. 1. The main stages of the computational procedure  

Normalised coordinates P, L, H of a 3D point and the 
coordinates of images X, Y are defined by the following 
equations: 
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where LAT_OFF, LAT_SCALE, LONG_OFF, 
LONG_SCALE, H_OFF and H_SCALE are the 
normalized parameters of the ground point coordinates, 
while SAMP_OFF, SAMP_SCALE, LINE_OFF and 
LINE_SCALE are the normalised parameters of the image 
point coordinates.  

Rectification of stereo images is a transformation in 
which the corresponding points in the images are ar-
ranged in the same rows. The aim of the rectification 
stage is to simplify stereo images processing, in particu-
lar, the search of the corresponding points. It is also more 
convenient to build a disparity (horizontal parallax) map, 
as in this case there is a disparity in one coordinate only. 

The main problem in the construction of the DTM pro-
cedure is the image matching, in particular, determining the 
corresponding points on different views. To apply methods 
for image matching, the images are typically rectified (the 
rows of the images are brought to the same orientation). 

To construct the DTM from stereo satellite images, 
three well-known classes of image matching methods are 
applied: local, global and semi-global [5]. To match the 
images, for each point (x0, y0) in the first image a corre-
sponding point (x0 + x, y0 + y) in the second image is 
searched. In the case of rectified images, one-dimensional 
search can be used instead of the two-dimensional search. 
In this case, the problem is reduced to calculating the dis-
parity between the images. 

As a result of the matching, a disparity map can be 
formed, which is a visualization of the obtained shifts: the 
more the corresponding point of the initial image is shift-
ed, the brighter each pixel of the disparity map is. 

To process the rectified images, we have introduced 
RPC conversion into the procedure. Since RPC are speci-
fied for the initial images, it is necessary to calculate new 
coefficients for the rectified images according to the pro-
jective transformations applied to both images. 

Calculation of three-dimensional points in the global 
coordinate system from the obtained corresponding 
points is performed using RPC for the rectified images. 
To do this, a nonlinear least-squares method is normally 
used [15]. 

Next, we give a more detailed, but a rather brief de-
scription of mathematical models and algorithms to be 
implemented at these stages of procedure. The stage of 
image matching is accompanied by a description of paral-
lel implementation of the proposed algorithm. The final 
section provides examples of the procedure implementa-
tion and the performance characteristics achieved. 

2. Rectification and RPC converting  

The initial data for this stage are a pair of satellite im-
ages recorded at different angles sharing some area. 

There are several approaches to the rectification: us-
ing the known shooting parameters (exact model), using 
the known fractional-rational image function (RFM, ra-
tional functional model) specifying the correspondence 
between the image coordinates and three-dimensional 
point in space [16], and using known or found corre-
sponding points between the images (projective, polyno-
mial model). 

Key points are formed using the coefficients of the ra-
tional function (RPC), which are part of the metadata. Af-
ter building the set of key points, the fundamental matrix 
is calculated. 

The corresponding points on two projections are con-
nected by a 3 × 3 fundamental matrix F [17], in particular, 
for the points with the coordinates set by 3 × 1 vectors 
mL, mR: mL = [xL, yL, 1]T, mR = [xR, yR, 1]R the following 
condition is met: 

0T
R L m Fm , (3) 

where  
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31 32 33

F F F

F F F

F F F
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F . (4) 

Equation (2) defines the epipolar constraints on per-
missible coordinates of corresponding points in stereo 
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images. It is obvious that it is necessary to know the exact 
fundamental matrix to take these constraints into account. 

To determine the parameters of the fundamental ma-
trix, a system of linear equations is solved by least 
squares method with at least eight given corresponding 
points. The corresponding points in the two images will 
be in the same rows if the fundamental matrix has the fol-
lowing form: 

0 0 0

0 0 1

0 1 0

 
    
  

F . (5) 

To achieve this, a particular projective transformation 
is applied to both images [18]. For the first and the second 
images, these transformation matrices are denoted as HL 
and HR, respectively, and satisfy the following equation: 

 ( ) 0T
R R L L H m F H m . (6) 

As the result of the rectification, the corresponding 
points will be in the same rows. 

As previously mentioned, the initial RPC cannot be ap-
plied to the obtained rectified images. Therefore, we need to 
calculate additional coefficients H11H12…H33 based on the 
projective transformation matrix H. We can rewrite the 
equations (2) with these coefficients as following: 
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where matrix H is equal to HR for point mL and to HL for 
point mR. 

3. Stereo matching 

We use the local method of image matching consist-
ing in finding the shifts by comparing the distribution 
functions of brightness on fragments of the left and right 
stereo images. For each pixel of the left stereo image we 
search for the corresponding pixel in the right image 
within a local window. 

The ENVI software package implements the local 
method, in which the criterion for the similarity of pixels 
is a normalized cross-correlation between the brightness 
values of the pixels in the left and right images. 

Another modification of the local method taking into 
account epipolar constraints via penalty coefficients is 
implemented in paper [19]. In this study, we do not use 
the penalty coefficients, because the local method is im-
plemented to the rectified images. Therefore, the search 
area is focused on the epipolar lines, at small intervals 
vertically. 

Here is a detailed description of the implemented lo-
cal method. Let us denote the coordinates of the points in 
the first image as (x0, y0), and the coordinates of the cor-
responding points in the second image as 
(x0 + x, y0 + y), where x and y are relative shifts of 
the coordinates x0 and y0, respectively. Let IL(x, y) and 
IR(x, y) be the intensity distribution function of the counts 
in these images. Matching algorithm consists in detection 
for each point (x0, y0) in the first image a corresponding 
point (x0 + x, y0 + y) in the second image by maximiz-
ing the normalized cross correlation coefficient 
E(x0, y0, x, y):
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 (8) 

where D(x0, y0) is an area around point (x0, y0), N is a 
number of pixels in the area D(x0, y0). 

Parallel implementation of the described algorithm is 
shown in Fig. 2. The interaction between CPU and GPU is 
presented in the form of the interaction between the three 
blocks. The first and third blocks include routines that are 
only executed on CPU. The results of their implementation 
are used in the second block to run CUDA kernels on GPU. 

In the first block a pyramid of images is generated 
which is used for further image matching. For better vis-
ualization, Fig. 2 shows a three-level pyramid of images 
(Block 1) for a pair of rectified images. The pyramid is 
formed as a set of images obtained by decreasing the res-
olution twice in both coordinates. Thus, an image with a 
2N times smaller resolution than the original one is 
formed at the Nth level of the pyramid. 

After the pair of images for the third level of the pyr-
amid has been formed, the routines in the second block 
begin. These routines process the image of the third level 
of the pyramid with zero initial shifts.  

When the routines in CUDA kernel have been com-
pleted, relative shifts for the left image are formed as an 
array. After copying the array from GPU memory to 
RAM, they are saved as an image. This image is a dispar-
ity map, which is scaled for all levels of the pyramid in 
Block 3 (see Fig. 3). 

At the next run of CUDA kernel the rectified images 
from the second level of the pyramid and the initial 
shifts from the previous run are used. The values of the 
initial shifts coordinates are doubled (Block 3). The 
number of CUDA kernel runs depends on the number of 
pyramid levels. 
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Global memory on GPU is allocated only once for all 
operations. The total amount of the allocated memory is 
equal to the number of pixels of the left image for the N-
level pyramid × (2 × 16 bit + 64 bit). This is because the ini-
tial image pixel depth is 16 bits, and the matrix that holds the 
relative horizontal and vertical shifts comprises two float 

values in each element of the matrix. Memory deallocation 
on the GPU is performed after all the calculations have been 
completed. To run CUDA kernel on the Nth level of the pyr-
amid, the following parameters are used: mesh size, block 
size, number of threads, image size, the size of the search ar-
ea and the size of the processing window. 

 
Fig. 2. CPU/GPU interaction for a three-level pyramid 

 
Fig. 3. Block of calculations on GPU 

Before running CUDA kernel the required data are 
copied from the RAM memory to global memory of a 
video card. Memory for the results storage is also allocat-
ed on the graphics card. Each thread calculates the Eu-
clidean norm for the two selected descriptors. Descriptor 
of a given point is a feature vector of the image fragment 

with its centre in the desired corresponding point. To find 
the corresponding point, it is necessary to calculate the 
Euclidean norm for all points descriptors selected in the 
search area as possibly corresponding.  

The number of the created threads equals to the size 
of the image (in pixels). 

Fig. 4 shows the enlarged scheme of the calculations, 
carried out by one thread. In Fig. 3 this computation 
block is identified as Block for calculation of the thread. 
Each thread performs calculations independently of the 
other threads. This embodiment allows us to avoid the re-
dundant data array formation on GPU. Consecutive com-
paring of the Euclidean norms on CPU is also omitted. 

After determining the maximum normalized cross 
correlation coefficient, the relative shift is determined 
on CPU. 

4. 3D model calculation  

After the image matching, for each pair of corre-
sponding points we can calculate a point in 3D space. To 
do this, we can use the method described in paper [15]. 
To calculate the desired three-dimensional coordinates, 
alongside with the coordinates of the corresponding 
points, we use meta-information about the rational func-
tion coefficients (RPC). The initial data for the consid-
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ered approach consist of terrain images obtained from 
different angles, and metadata in the form of an RPC set 
[4] 

(20 1) (20 1) (20 1) (20 1)
, , ,

   
a b c d  , which represent a model of im-

age formation by a satellite camera. On the basis of these 
data, we obtain the following system of nonlinear equa-
tions for the left and right images (indicees L and R stand 
for the left and right images, respectively): 

( , , )
( , , ) ,

( , , )

( , , )
( , , ) ,

( , , )

( , , )
( , , ) ,

( , , )

( , , )
( , , ) ,

( , , )

T
YL L

L L T
YL L

T
XL L

L L T
XL L

T
YR R

R R T
YR R

T
XR R

R R T
XR R

N P L H
Y g h

D P L H

N P L H
X f h

D P L H

N P L H
Y g h

D P L H

N P L H
X f h

D P L H

    

    

    

    

a u

b u

c u

d u

a u

b u

c u

d u

 (9) 

where 
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Similar expressions for NYR(P, L, H), DYR(P, L, H), 
NXR(P, L, H), DХR(P, L, H) differ from the above written 
ones by the values of their coefficients. 

The algorithm for the solution of the nonlinear system 
of equations (6) enables us to find the 3D point coordi-
nates P, L, H in the global coordinate system. This algo-
rithm is performed in two steps. 

Step 1. The initial values of ground coordinates are 
calculated. The distortions caused by the optical projec-
tion can be represented by the ratios of first-order terms 
in the RPC. Excluding the RPC of high order, we can 

write the functions transforming the object coordinates 
into pixel coordinates as follows: 
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where (ak, bk, ck, dk)k = 0,…, 3 are first order RPC. Similar 
expressions can be written for XR and YR. 

 
Fig. 4. Scheme of the computation on one thread at CUDA 

kernel run 

These equations can be transformed into the following 
equation groups: 
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Needless to say, we only need to know the first order 
RPC of two or more images to calculate the initial object 
coordinates (P0, L0, H0) either from all the above men-
tioned equations or from only three of them, two of which 
involve Y and one X. 

Step 2. The final object coordinates are calculated. By 
performing a Taylor expansion, the observation equations 
can be written as 
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(16) 

and the final object coordinates can be obtained with the 
use of least square adjustment.  

Our implementation of this algorithm uses data de-
composition for parallelism executing a single instruction 
on multiple data (SIMD). We take the algorithm of sys-
tem solution (10) described in the previous section as the 
single instruction. It is justified by the fact that the calcu-
lations on each thread are performed independently.  
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The computation time of a serial C++ algorithm mainly 
depends on such characteristics of a processor as its clock 
rate and instructions. Basically, to execute such code in 
IDE Microsoft Visual Studio, a developer only needs to 
write the code, and command line parameters are generated 
automatically by integral means of Visual Studio. In case 
of parallel implementation of CUDA algorithm we need to 
take into consideration the characteristics shown in the Ta-
ble 1. The following features serve as restrictions for the 
implementation and CUDA kernel launch.  

Table 1. CUDA Driver Version and GeForce  
GTX 750 Ti specifications 

CUDA Driver Version / Runtime Version 7.5 / 7.5 
CUDA Capability Major/Minor version 
number 

5.0 

Streaming Multiprocessors (SM) count  5 
Total amount of global memory 2048 MB 
Total amount of constant memory 65536 bytes 
Total number of registers available per block 65536 bytes 
Maximum number of threads per 
multiprocessor 

2048 

To find the solution of the system (10) we used the fol-
lowing non-atomic operations: vector multiplication, dot 
product and matrix inversion. In CPU and GPU implementa-
tion these operations are written in C++ without the use of 
linear algebra libraries with a view to higher efficiency.  

The speeding-up s of our CUDA algorithm in compari-
son with the serial one can be estimated by the formula  

kernel( )/HtoD DtoH ENVIs t t t t   . (17) 
This formula takes into account communication time 

between CPU and GPU. Time of input data transfer from 
CPU memory into GPU memory is denoted as tHtoD, time 
of CUDA kernel output transfer from GPU memory into 
CPU memory is denoted as tDtoH, CUDA kernel computa-
tion time as tkernel  and ENVI software application compu-
tation time as tENVI. 

CUDA kernel computation time depends on the pa-
rameters defined at launch. The parameters were chosen 
so that the graphic card occupancy was maximum. Occu-
pancy is a ratio of the executed threads to maximum 
number of threads per streaming multiprocessor (SM). 

Using NVIDIA Visual Profiler we calculated that 236 
registers are required to execute a single thread. Consequent-
ly, one SM cannot execute more than 277 threads. Since the 
block size must be divisible by 32, one block cannot contain 
more than 256 threads. Thus, CUDA occupancy is equal to 
256 / 2048 = 0,125. Since the graphic card has only five SM, 
the peak graphic card occupancy, in terms of this GPU im-
plementation, is achieved with 5 × 256 threads. Execution of 
that many threads provides linear speeding-up. Experimental 
results are shown in Table 2. 

Table 2. 3D coordinates calculation  
for 12000 × 12000 pairs of corresponding points 

ENVI computation time (milliseconds) 800 × 103 
CUDA kernel computation time (milliseconds) 1489 
GPU memory copy time (milliseconds) 1471 
Total GPU computation time (milliseconds) 2960 
Speeding-up 270 

5. Experimental results 

The stereo pairs obtained from satellites IRS-P5 with a 
spatial resolution of 2.5 meters were chosen as the initial 
data. Stereopair IRS-P5 (Cartosat-1) was obtained on Jan-
uary 30, 2008. The initial images are shown in Fig. 5. 

a)  b)  
Fig. 5. Initial images: a) left, b) right 

Based on the ENVI matching algorithm, the three-
dimensional model was built. On the resulting model 
(Fig. 6a)) the mountains and the terrain are seen clearly. 
Fig. 6b) shows a disparity map generated using the pro-
posed hybrid CPU/GPU procedure (Fig. 1).  

a)  b)  
Fig. 6. Disparity map: a) ENVI, b) proposed parallel algorithm 

DEMs shown in Fig. 7a, b were generated for the 
above mentioned regions of the disparity map. In order to 
compare these DEMs, the proximity measure offered in 
paper [20] was calculated. In particular, we calculated ele-
vation difference on the preset significance level 95 % (so-
called linear error, LE95) which was equal to 8.64 meters.  

Fig. 7 shows a three-dimensional terrain model ob-
tained after image matching. 

a)  

b)  
Fig. 7. 3D-surface: a) ENVI, b) proposed parallel algorithm 

Table 3 shows the results of comparative studies of 
the implementation times of the matching algorithm 
ENVI-5.0 software package and the proposed parallel al-
gorithm on the GPU at different numbers of pyramid lev-
els (the data were obtained using GeForce GTX 750 Ti, 
and Intel Core i7-6700K, 16GB DDR4, OS Windows 
10). Rectified images with the same size of 
12000 × 12000 pixels were used in the experiments.  
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As it can be seen from the table, the time of 
CPU/GPU method implementation for the resolution of 
219 × 219 pixels is not given. This is because the pyra-
mid used within the proposed approach is one level less. 
The implementation time for the CPU / GPU is given in 
milliseconds. The proposed procedure calculates the 
corresponding points several orders of magnitude faster 
than ENVI-5.0 software. This effect is caused by several 

reasons. Firstly, ENVI is a package comprising a lot of 
modules for a wide range of applications. Our develop-
ment is aimed at solving one particular problem of this 
spectrum. Secondly, ENVI is written in a programming 
language IDL. Our parallel implementation uses CUDA 
technology and is written in C++ language. Thus, our 
development is aimed at the specific task and uses mod-
ern technology. 

Table 3. Obtained experimental results 

Pyramid level 1 2 3 4 5 6 7 
Image resolution in pixels 219 × 219 438 × 438 875 × 875 1750 × 1750 3500 × 3500 6000 × 6000 12000 × 12000 
Implementation time of the ENVI 
method (in milliseconds) 

1.1 × 103 1.87 × 103 7.44 × 103 28.24 × 103 112.54 × 103 441.27 × 103 1806.5 × 103 

Implementation time of the CPU / GPU 
method (in milliseconds) 

- 6.3 20.2 70.4 252.9 925.3 3390.1 

 

Conclusion 

Experimental results demonstrate that the developed 
general procedure provides the 3D DTM quality compa-
rable to that achieved with the use of the ENVI-5.0 soft-
ware. However, implementation time of the proposed 
procedure of the same pair of images with dimensions of 
12000 × 12000 is about 300 times less. Unfortunately, 
there are currently no representative databases of 3D 
model test sets with corresponding stereo images. There-
fore, further research will be aimed at the development of 
methods of test images and 3D scene models formation, 
and the procedure verification in order to obtain objective 
statistical evaluation of DTM quality. 
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