High performance 2D simulations for the problem of optical breakdown
D.A. Fadeev


Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), Nizhny Novgorod, Russia

Full text of article: English language.

Methods of numerical simulation of two-dimensional short laser pulse nonlinear dynamics are discussed. In this work parallel processing methods for modern CPU (central processing units) architectures supporting non-uniform memory access are considered. The method of adaptive mesh subdivision is proposed to reduce non-uniform load of each CPU during processing of nonlinearity. The results of the tests performed on the Intel Nehalem based a workstation with eight cores are presented.

computational electromagnetic methods (050.1755); ionization (260.3230); ultrafast phenomena (260.7120); optical breakdown; parallel processing; non-uniform memory access (NUMA); adaptive calculations.

Fadeev DA. High performance 2D simulations for the problem of optical breakdown. Computer Optics 2016; 40(5): 654-658. DOI: 10.18287/2412-6179-2016-40-5-654-658.


  1. Burau H, Widera R, Hönig W, Juckeland G, Debus A, Klu­ge T, Schramm U, Cowan TE, Sauerbrey R, Buss­mann M. PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster. IEEE Trans Plasma Sci 2010; 38(10): 2831-2839.
  2. Non-uniform memory access. Source: áhttps://en.wikipedia.org/wiki/Non-uniform_memory_accessñ
  3. Müller D. Memory and Thread Management on NUMA Systems. Diploma Thesis. Dresden; 2013.
  4. Kandidov VP, Shlenov SA, Kosareva OG. Filamentation of high-power femtosecond laser radiation. Quantum Electron 2009; 39(3): 205-228. DOI: 10.1070/QE2009v039n03ABEH013916.
  5. Schmitt-Sody A, Kurz HG, Bergé L, Skupin S, Polynkin P. Picosecond laser filamentation in air. New J Phys 2016; 18: 093005.
  6. Brabec T, Krausz F. Nonlinear Optical Pulse Propagation in the Single-Cycle Regime. Phys Rev Lett 1997; 78: 3282. DOI: 10.1103/PhysRevLett.78.3282.
  7. Dostovalov AV, Wolf AA, Babin SA, Dubov MV, Mezentsev VK. Numerical investigation of the effect of the temporal pulse shape on modification of fused silica by femtosecond pulses. Quantum Electron 2012; 42(9): 799-804. DOI: 10.1070/QE2012v042n09ABEH014960.
  8. Chen Y, Theberge F, Kosareva O, Panov N, Kandidov VP, Chin SL. Evolution and termination of a femtosecond laser filament in air. Optics Letters 2007; 32(24): 3477-3479. DOI: 10.1364/OL.32.003477.
  9. Britt S,·Tsynkov S, Turkel E. A Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates. J Sci Comput 2010; 45(1): 26-47. DOI: 10.1007/s10915-010-9348-3.
  10. Balakin AA, Litvak AG, Mironov VA, Skobelev SA. Compression of femtosecond petawatt laser pulses in a plasma under the conditions of wake-wave excitation. Phys Rev A 2013; 88(2): 023836. DOI: 10.1103/PhysRevA.88.023836.
  11. Pipahl A, Anashkina EA, Toncian M, Toncian T, Skobelev SA, Bashinov AV, Gonoskov AA, Willi O, Kim AV. High-intensity few-cycle laser-pulse generation by the plasma-wakefield self-compression effect. Phys Rev E 2013; 87(3): 033104.
  12. Bogomolov YaL, Yunakovsky AD. Split-step Fourier Method for Nonlinear Schroedinger Equation. In: Proceedings of the International Conference “Days on diffraction”, 2006. Saint-Petersburg: Universitas Petrpolitana; 2006: 34-42.
  13. Bellman R, Angel E. Dynamic programming and partial differential equations. London: Academic Press, Inc. (London) LTD; 1972. ISBN-13: 978-0120579501.
  14. Thomas LH. Elliptic Problems in Linear Differential Equations over a Network. Watson Science Computer Laboratory Report. New York, NY: Columbia University; 1949.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20