Design, simulation, and fabrication of silicon-on-insulator MEMS vibratory decoupled gyroscope
P. Verma, V.S. Pavelyev, B.O. Volodkin, K.N. Tukmakov, A.S. Reshetnikov, T.V. Andreeva, S.A. Fomchenkov, S.N. Khonina


Samara National Research University, Samara, Russia,
Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia

Full text of article: English language.

This paper reports the design and fabrication of a 2-degree-of-freedom (DOF) decoupled vibratory gyroscope based on a silicon-on-insulator (SOI) MEMS process. The 2-DOF capacitive comb structure is deliberately designed to have a decoupled drive and sense mode oscillation to prevent the unstable operation due to mechanical coupling, resulting in a low zero rate out-put drift. It is well known that the closer are the drive and sense resonances, the higher is the angular rate resolution of the gyroscope. Generally, this is achieved by using symmetric suspensions, but it results in a reduced bandwidth. The proposed design has been configured to achieve a bandwidth of about 150 Hz, while ensuring the decoupled operation of the drive and sense modes. An analytical method has been employed to study the steady state response of the 2-DOF structure. FEM analysis has been carried out in CoventorWare® MEMS Design software and the simulation results show that the drive resonance occurs at 21.48 kHz and sense resonance at 21.63 kHz, which are in close agreement with the theoretical results. The structure is designed with a 15 µm thick device layer. Fabrication of the design is proposed using a two mask process based on Deep reactive-ion etching (DRIE) and sacrificial wet release etching on a SOI wafer. DRIE etching with an aspect ratio of 1:5 has been successfully carried out as desired and the results have been presented.

gyroscope, MEMS, SOI process, CoventorWare®.

Verma P, Pavelyev VS, Volodkin BO, Tukmakov KN, Reshetnikov AS, Andreeva TV, Fomchenkov SA, Khonina SN. Design, simulation, and fabrication of silicon-on-insulator MEMS vibratory decoupled gyroscope. Computer Optics 2016; 40(5): 668-673. DOI: 10.18287/2412-6179-2016-40-5-664-668-673.


  1. Yazdi N, Ayazi F, Najafi K. Micromachined nertial sensors. Proceedings of the IEEE 1998; 86(8): 1640-1659.
  2. Alper SE. MEMS gyroscopes for tactical-grade inertial measurement applications. PhD dissertation, 2005: Middle East Technical University, Turkey.
  3. Oh Y, Lee B, Baek S, Kim H, Kim J, Kang S, Song C. A surface-micromachined tunable vibratory gyroscope. Proceedings of the IEEE,Micro Electro Mechanical Systems, MEMS '97, Tenth Annual International Workshop 1997; 272-277. DOI: 10.1109/MEMSYS.1997.581824.
  4. Kovacs GTA, Maluf NI, Petersen KE. Bulk micromachining of silicon. Proceedings of the IEEE 1998; 86(8): 1536-1551.
  5. Verma P, Shekhar C, Arya SK, Gopal R. New design architecture of a 3-DOF vibratory gyroscope with robust drive operation mode and implementation. Microsystem Technologies 2015; 21(10): 2175-2185. DOI: 10.1007/s00542-014-2384-4.
  6. Verma P, Khan KZ, Khonina SN, Kazanskiy NL, Gopal R. Ultraviolet-LIGA based fabrication and characterization of a non-resonant drive mode vibratory gyro/accelerometer. J Micro/Nanolith MEMS MOEMS 2016; 15(3): 035001. DOI: 10.1117/1.JMM.15.3.035001.
  7. Ishihara K, Yung CF, Ayon AA, Schmidt MA. An inertial sensor technology using DRIE and wafer Bonding with interconnecting capability. Journal of Microelectromechanical Systems 1999; 8(4): 403-408. DOI: 10.1109/84.809054.
  8. Li Z, Yang Z, Xiao Z, Hao Y, Li T, Wu G, Wang Y. A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching. Sensors and Actuators A: Physical, 2000; 83(1-3): 24-29. DOI: 10.1016/S0924-4247(99)00375-1.
  9. Kazanskiy NL, Moiseev OYu, Poletayev SD. Microprofile formation by thermal oxidation of molybdenum films. Technical Physics Letters, 2016; 42(2): 164-166. DOI: 10.1134/S1063785016020085.
  10. Kazanskiy NL, Khonina SN, Skidanov RV, Morozov AA, Kharitonov SI, Volotovskiy SG. Formation of images using multilevel diffractive lens. Computer Optics 2014; 38(3): 425-434.
  11. Volkov AV, Kazanskiy NL, Moiseev OYu, Soifer VA. A method for the diffractive microrelief formationusing the layered photoresist growth. Optics and lasers in Engineering 1998; 29(4-5): 281-288. DOI: 10.1016/S0143-8166(97)00116-4.
  12. Verma P, Gopal R, Arya SK. Analytical modeling and simulation of a 2-DOF drive and 1-DOF sense gyro-accelerometer. Microsystem Technologies 2013; 19(8): 1239-1248. DOI: 10.1007/s00542-012-1725-4.
  13. Verma P, Arya SK, Gopal R. Lumped parameter analytic modeling and behavioral simulation of a 3-DOF MEMS gyro-accelerometer. Acta Mechanica Sinica 2015; 31(6): 910-919. DOI: 10.1007/s10409-015-0512-8.
  14. Verma P, Gopal R, Arya SK. Dynamic characteristics of vibratory gyro-accelerometer. In: Proceeding of the IEEE, 5th International Conference on Computers and Devices for Communication, University of Calcutta, India, 2012. DOI: 10.1109/CODEC.2012.6509277.
  15. Verma P, Agrawal P, Gopal R, Arya SK. Parametric sensitivity analysis of a 2-DOF drive and 1-DOF sense modes MEMS gyro-accelerometer structure. Advance Science Letters 2014; 20: 1495-1498. DOI: 10.1166/asl.2014.5557.
  16. Verma P, Juneja S, Savelyev DA, Khonina SN, Gopal R. Design and fabrication of a 1-DOF drive mode and 2-DOF sense mode micro-gyroscope using SU-8 based UV-LIGA process. In: Proceedings of the AIP 1724, 2016. DOI: 10.1063/1.4945137.
  17. Verma P, Gopal R, Butt MA, Khonina SV, Skidanov RV. Design and simulation of non-resonant 1-DOF drive mode and anchored 2-DOF sense mode gyroscope for implementation using UV-LIGA process. In: Proceedings of the SPIE 9807, 2016. DOI:10.1117/12.2231372.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20