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Abstract

The focal-plane field amplitude is calculated whighting double-ring phase elements by flat and
Gaussian beams. Emerging conditions in the minirmumaximum centers, including flat-top maxi-
ma, are given. For the field amplitude, we obtainations that define the radius of the first zero-
intensity ring based on the deduced expressioresrddt values are listed for several parameteopof
tical elements and incident beams due to the laekalytical solutions. Numerical simulation result
are given for flat incident beams; they are futiypsistent with the theoretical calculations.
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Introduction

One of the simplest diffractive optical element©f) is
a circular plate with thickness step correspondinghase
difference of 180 degrees. Despite its design &irtyplthis
element happens to have several practical appiisati

In particular, such plates are used to align irnterd
focused Gaussian beams [1]. Moreover, we meanad
focus on a ring/square, but somewhat differentlp -eb-
tain a domain with dimensions close to diffractionits
with approximately uniform intensity (not neceslyawith
sharp edges). DOE proposed in paper [1] in the fofra
ring or square step is the simplest element amérapia-
sidered elements used to solve similar problemst]2In
paper [5], two stepped elements are used for (g
dimensional dynamic beam correction.

Another application for phase-step plates is sliarp
cusing. Phase steps are used in accordance witlirghe
Hermite-Gaussian mode to excite an electric-fielagi-
tudinal component at the focus center; this wassicbn
ered in papers [68]. It is shown in papers [9, 10] that
focal pattern and, accordingly, contribution of tbagi-
tudinal component to the central part of focal domia
influenced by mutual arrangement of polarizationsa
and a phase step curve for the plate. Besidesajerp
[11], the phase-step plate is used to study peitoz
sensitivity of a near-field microscope.

Radial-step phase plates are also used for shans-fd
ing and in polarization transformations [12]. Instlcase,
they are capable to perform similar functions léther
of multi-ring or multi-level phase plates [336]. Itera-
tive or other optimization algorithms are often dige
calculate them. The advantage of simple elememsarip
one- or two-ring) lies in their ability to analysilty evalu-
ate their activity [17, 18].

Sharp focusing of radial-polarized beams is comsitie
in paper [17]. Interrelation between width of apfie|agm
ring with the introduced radial phase step and Ifepat
dimensions and intensity values is also studiecethié is
shown that due to destructive interference gengrhte
rings with different phases, it is possible to skgalar limits
related to the first zero of the zero-order Befswdtion. The

t

K

minimum focal spot size (FWHMO0.33\) is achieved when
diaphragm ring width is 20 per cent of radius dflhaper-
ture. In this case, intensity of side lobes dodgseroeed 30
per cent of a central peak. It is also shown thahtsoduc-
ing phase steps and simultaneously widening aafiegture,
it is possible to generate the focal spot not ediogethe size
{imit corresponding to a narrow ring aperture winitensity
increases almost 6 times. Furthermore, side lobésaze
35 per cent of the central peak.

Paper [18] cites evidence that two annular zones ar
sufficient for many problems. Analytical estimatase
obtained for parameters of a two-zone elementfiaxié
scalar approximation; the element provides maximum

n&@lues of interference maxima on optical axis. Zoadi

coincided with zone-plate radii. However, a zonatel
with free-space limiting numerical aperture haséstral
zoner;=1.12\ in radius, and remaining zones are repre-
sented by rings less tha2 wide. In this case, decaying
waves get mostly through a peripheral part of thgcal

a element; they slightly affect distribution neariopt axis.

Therefore, it is possible to discuss influence wolfycone
or two central zones. It is shown numerically andlwti-
cally that an optical microelement, consisting nfyotwo
axially aligned annular zones, can be used forpsif@r
cusing of laser radiation. Moreover, the greatesti$ing
degree is achieved when the central zoié2sn radius.

Here, as in paper [18], influence of the total edam
(instead of the ring element) is regarded in faldfdiffrac-
tion. Though a more accurate off-axis model is linquh-
per [18], analytical calculation was carried oulydor the
optical axis field. The transverse in-plane fietdrespond-
ing to the lens focal plane is analyzed in thisgoap

1. Theoretical study of double-ring DOEs

Let's consider a phase DOE with radmgsits structure
is shown in Fig. 1. The phase is equal to zerbenirternal
circle of radius; and to 180 degrees in a ring between the
radii r, andrz. Let's consider the field being generated in
the lens focal plane when lighting this element.

In this paper, we examine two types of incident
beams: flat-top and Gaussian beams.
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Fig. 1. Drawing of a double-ring phase DOE
1.1. Focal field when lighting DOESs by flat-top Ines
The field amplitude in the lens focus plane is det

mined by the radially symmetrical Fourier transfoas
follows:

Ap) = J'A,(r)J (kprjrdr

whereAq(r) is the field amplitude in the input plank(x)
is the Bessel function of the zero ordkg 217A is the
wavenumber,A is the wavelength of an illuminating

U

(1)

with the a double-ring phase DOE. In our case, axeeh
the following:

'%(r)={

Substituting Eq. (2) in Eq. (1), we obtain the dolt
ing expression for the amplitude:

A(p)——{Z £ [kprJ rZJl(kazﬂ_
kp f f

The zero-point amplitude is equal to the following:

1,0<sr<r,
-1r <r<r,.

()

®3)

2
r.2

Ap=0)=r’ R (4)
A(0)=0, when r? =r}/2; provided r >r7/2 A(0)>0,
otherwiseA(0)<O.

Since

A) =—$M(rw{$] “dr, A(p=0)=0,

we see that a critical point will be always in zefde
second derivative is equal to the following:

A()=- ["] fA,(r)J["prj ,

soro (8] 5

wherefrom we obtaii\"(0)=0, whenr,' =r,'/2; provid-
ed r' >r}/2 A"(0)<0 (maximum), otherwisé"(0)>0
(minimum). For r' =r,)/2 an extremum shall béat.

Thus, using the Taylor series expansion, we canepr
that this will be thanaximum

2}

beam,f is the focal length of a lens, which is combing

Let us introduce the following notation:

u=r/r, (<1). (5)
Thus, the followingthree configurations are possible
(Fig. 2): the negative minimum (provideik p < 1/@);

the positive minimum (provideﬂi/\/_z <u< 1742 ), and

the positive maximum (providedL/<‘/_2<us1). The
fourth configuration, i.e. the@egative maximumis im-

possible.

a) b) c)
Fig. 2. Layout view of the amplitude near opticalax
configurations | (@), 11 (b), 11l (c)
The zero amplitudegoosition is obtained by setting the
right-hand side of Eq. (3) equal to zero; whenkpr,/f,

this gives the following equation:

203, (X = J,(¥. (6)
The first nonzero root of this equation is conséder

The equation is solved numerically by using Befiset-

tion tables, and then, if necessary, the root cuxs(g)
can be approached to the analytic curve. If we kmgw

we can determine the radius of the dark ring devid:

_ X% f
kr,
It is directly shown in Eq. (6) that at=0 andu=1,
Xo=]1,1is the first root of the functiod(x). Thus solving
Eq. (6), we obtain the following values.
Table 1. Zero amplitude position versus ring radiaiso

Po ()

ul o 0.1 02 [ 03] o04] o5 04

X0 | 3.832| 3.742 | 3513 3.2122.866] 2.462[ 1.912
1 1 1

u|l 07 |[-=-0|-—=+0| 08 | = | 09| 1
V2. |42 {2

X0]|0553] 0 | 6.116| 5539 5.241] 4.734] 3.832

1.2. Focal field when lighting DOEs by Gaussianrsa

In this case, the field amplitude in the input gas as
follows:

Ab(l’) — ef(r2/202) %1, 0<sr< r,

Lr<r<r,.

(8)

whereo is a beam-width determining parameter. It is im-
possible to make exact calculations here; howewer,
can obtain rather close approximation. Breaking mitive
element into two rings, we get the following:

A(p) =
J [%j rdr=

—.[ 20 ( jrdr jeﬁb
=B+—B_=ZB+—(a+lB_).

The sum in parentheses can be determined with-a rea
sonable degree of accuracy using the tables gietowh

(9)
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if the pupil's radius meets the conditiop>~(2+2.5)0
when an upper limit could be replaced by an indiriin-
it. The following formula is given in tables preset in
paper [19] (p. 186).

J'e ] c>§ xd x=
(10)
c\/?[ 5o c c
8p3/2 l(v—l)/z 8_p _l(v+1)/2 8_p :
Whenv =0, the formula is simply as follows:
1 2
e 3 (o) xdx=— e, 10a
I () e (100)
Using Eq. (1@), we obtain the following:
o 7r7 (kpch)2
'[ez [ ]rdr—oe2f (11)
0

We can calculate the value Bf with the specified
degree of accuracy replacing a Gaussian functidh
with a parabolic cone, whemn<ao (a knee of the Gaussial
curve). The case when this condition isn't welfifigd is
uninteresting: an exterior ring has no meaningfidat
So, the result is limited to one circular hole &lighted.

Suppose the condition <o has been satisfied. The
the following approximation should be made withnza$i
accuracy over the range iofry:

I,Z

e 2 =q,—a,r. (12)

The values ofi; anda; depend on used approximatio
and they are given below. Using Eqg. (12), we rexéhe
following:

krp] ra =

2B, = 2'f @, —a,r?)J, ( :

I:;J (kp:r j(ul cxzrf)+ (13)
fr, ‘]2 kpr, a,.
kp f
The overall amplitude is equal to the following:
A= Z%J [k’?rlj(al—azrf%
p
. (14)
_(kpo)”
A5 {pes

This shows that for large valuesmfiecreasing is de-
termined with the first summand and the rate ofagids
identical to that one valid for lighting with flabp beams.

Whenr,=0 (no phase step), we get a trivial response:
_(kpo)*
A=-g% 2"

which is the Gaussian beam.

Before proceeding any further, it's worthwhile tetg
at least one technique for finding the valuasand a..
The simplest method, though probably not the bestio
terms of its accuracy, is a collocation method. &geal
zero and edge values as follows:

a, =1,
}:,

Substituting Eqg. (15) in Eq. (14), we obtain thé fo
lowing:

1=, (15)
e—(rf/za?) -a 2

/
L oL G —(1 e“l 20))[—'—

A= 2frl kpr, 672; +
ko ‘| f
. (16)
L6 (kpo)”
f kprl 1- e_25 2pf2

2 2 _
+4 — | J, 2 |—g?e
kp f
The value ofA(p=0) can be calculateexactlywith-
out any approximations made. It equals to the falhg:
be

h

r? i

A(p=0)=02-20% 2 +g2e? (17)
Providing however that, is larger (see the line before
Eqg. (10)), the latter summand shall be neglected:
" Ap=0)=0?(1-26). (17)
Configurations will be determined according to
Eq. (17a) being similar for derivatives. We writet @c-

curate values, just as in Eq. (17), but they ass leon-
venient for analysis due to their complexity.

A0)=0, whenr, =0+2In2=1.1774 . (18)
At less values of1, we haveA(0)<0, otherwise we have
A(0)>0.

The first derivativeA'(p=0) equals to zero and the sec-
ond one is as follows:

¢

2
P

+0,50% (2 + 202 p 2

=]

|,2

-1
o' -0’ (r’+20%)e 2 +

(19)

With disregard for the latter summand, we get ttlewing:

2 %
A(p=0)= —(%) o’ o” - (1 + 20%)e ZJ . (1%)
A'(0)=0, whenr, =1.83%, (20)

where 1.832 is the root of the equatior (¥%+2)e¥2.
This corresponds to tHtat maximumat a smaller vale of
A"(0)>0 (minimum), otherwise we haw'(0)<0 (max-
imum). Configuration change takes place similadyim
case with flat-top beams (Fig. 2)

Configuration I: r1<1.1774;
Configuration II: 1.1776<r,<1.83%;
Configuration IlI: ri>1.83%.
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It is difficult to compare edges obtained from yudix-
act expressions because of the fact that therevareadii,

A"(0)=0 atr;=1.6870, (23)
where 1.687 is the root of the equatidil+2e7%?) =12;

not one, in exact expression. However, we can cménp)ait is less than the factor given in Eq. (20) OVlethe ar-

them with those ones that will be used in Eq. (L&ing
two summands of the Taylor serigh(X) = (x/2)—(x%/16),
Jo(X) = (X3/8)—(x*/96)), the near-axis amplitude can |
conceived of as follows:
04]
+— .
2

[rlz{ _;ZZJ 2]
—|1+e® |-0° |+
2
2
| ke
f
Though Eg. (21) is approximate, the zero valuexace
it equals to the following:
2
A(0) =1

Ll1+e? |-0?,
2

wherefrom

A(0)=0 atr,=1.150, (22)
where 1.15 is the root of the equatid(il+e>¥?) =2; it is
somewhat less than the factor given in Eq. (18 3éx-
ond derivative is equal to the following:

o]

A
(21)

2
_

{1+ 2e 20

4
r.1

24

4
_n

(1+ 2e’“12’2°2’) +04} ,

ea of configuration Il is narrower than that ondaiied

by exact calculation. It should be pointed out that fac-
€tor given in Eq. (22) and especially in Eq. (23)admger

than permitted; this is necessary to make the ajpes

tion mentioned in Eq. (12), on the basis of which &6)

has been obtainetle good

Zero values of Eq. (16) shall be determined usieg t
below tables. With the use of

x=(kpt/ f); n=pld
we haveA(p) =0 be written as follows:

ou2 (%) @h2 4
X

+4y2 dz(zx) [él_ e—uzlz) - ¥ I@?)
X

The equation is solved farat givenp. If we know the root
of Xo, the radius of the dark ring is determined avad!:

(24)

:ﬁgf_

G (25)

Po
In contrast to Eq. (7), a real factor is natitself, but
X/ That's why we added a proper line in the table of
roots of equation (25) (implication of one moreeliwill

12 be clarified below).
wherefrom
Table 2. Zero amplitude versus circle-and-beamuadatio
vl 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.p ] 11 1.15
Xo 0 0.3043 0.51 0.669 0.79 0.879 0936 0.961 0.p48B880[ 0.755( 0.464 0
Xol L ) 3.043 2.55 223 197p 1.797 1396 1.372 1.185 0986/'55| 0.422] O
2u,/—Inp 0 0.3035 | 0.5079 0.658 0.766 0.883 0.858 0.836 076684 0 - -

In contrast to the flat case, whenwas within the
range from 0 to 1 (though it had another definitibare),
hereu can theoretically possess any positive value, hg
ever really meaningful values are limited: wh

u>2+2.5, this is equivalent to near-zero values with th

amplitude sign reversal. Besides, Eq. (16) andetbee
Eq. (25) are obtained on the assumption that 1. An-
yway, the values larger than 1.15 (see. Eq. (2@8)nat
particularly of any interest.

It is apparent from the above table that with réaigic
M the radiuspo goes up with no limit as it must be. THh
amplitude constraint tends to the Gaussian curaepbs-
Sesses no zeros.

e

Then the left-hand side of the equation will berave
agely equal to the following:

W

- 2
o G+ 42 =+ Lt s 2,
n o G OrACEES =pteoptp

so, we get the following equation:

le —e i@ % =2U /_|nu )

The ratio x,/p=2/-Inp goes up with no limit
whenp - 0.

(26)

2. Numerical simulation results
Numerical simulation was implemented under the flat

With small p we can also determine the root vallieincident beam with the following parameter: theeut-

without the benefit of the tables. The right-haitlk ©f the
equation (24) ap1— 0 and with a fixed value of tends to
zero much faster than the left-hand side; therefateould
be small, too. In this case, we can make the fafigvap-
proximations on the left-hand side of the equation:

o2 ] o gl :u_z. J(¥_ 1. 3(¥_1
’ 2 X 2" X 8

dius isr,=10Q\ (A is the wavelength of incident radiation
equaled to 1 um); the lens focal lengtf #&400\. Let S
denote a ratio between the side lobe intensitytheaen-
tered intensity. The results are given in Fig. 3-6.

As we can see, when the size of the central light
spot decreases, the energy goes out of it intoriplpe
eral ring.
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Fig. 3. Focusing results for the element with phstep radius 1= 0.6r2: the element’s interior-part field (dashed line,
FWHM= 3.431, S= 0.015), the element’s front-end field (solid lif®YHM= 1.744, S= 0.123) and their superposition (dotted line,
FWHM= 1.24, S= 1.6). Amplitudesd) and intensities (b) are shown

6000 Fig. 5 shows that it is also possible to obtainyver
4000 ST\ srr_lall sizes for the_ cen_tral spot through its veoy |
i/ \“-' brightness and growing side lobes.

2000 4 : If we compare numerical simulation results withahe

retical calculations, they should nearly coinciBeurces
0 ‘f 7]

of discrepancy are as follows: computational errors
solving the Eq. (6); computation errors of numdrgiem-
ulation; visual accuracy of determining the zeraifion

4 2 0 2 . 4 x/A
Fig. 4. Focusing results for1= 0 (FWHM= 2.051, dotted
line), n=0.25r (FWHM= 1.914, dashed line), anci= 0.5r2

(FWHM= 1.514, solid line) in graphs obtained by simulation.

700 2] A 3F

g g g A\ 5
300 F T TN 2

/[ & FARN i Y | |
SA) Y/ /4 R \ VY I AR BN 7/ A\ /
100 R I/ \CVA=ENR\ T/ RV
N NYAR N 0 =
a) 4 -2 0 2 4 x/» b) -0.4 -0.2 0 0.2 0.4 x/\

Fig. 5. Focusing results for1k 0.6r2 (FWHM= 1.224, dashed line),1= 0.65r (FWHM= 0.964, solid line), and 1= 0.7r
(FWHM= 0.351, dotted line) ¢); central part for 1= 0.7r2 (b)

1200 By parameter values from Eq. (7) used in simulation
o0 = we get the following:
NS = NS P, = (0,637 ) . (27)
00 /AN RAERN Values of the radius of the first dark ring caldeth
o e 2 1 “Naat” by Eq. (27) and determined according to certaiarisity
-4 -2 0 2 4 x/\ graphs obtained from simulation are shown in Tahle
Fig. 6. Focusing results forie= 0.75r (dashed line),»= 0.8r2 Values ofxo are taken from Table 1 or obtained by inter-
(solid line), = 0.85r. (FWHM= 3.94, dotted line) polation.

Table 3. Comparison of zero points discovered thteally and by simulation

Il 0 0.25 0.5 0.6 0.65 0.7 0.75 0.8 0.85
poasin (27) | 2.44| =2.148 | 1.568| 1.218 =0.785 | 0.352 | =3.726 | 3.528| =3.289
poasingraph =25 =22 | =15 | =1.2 | =0.85 [ =0.32| =3.75 | =35 | =3.3

Values of the radius are given umits of wavelength and the largest flat-topped value similar to thefigp
Designated values mean the use of linear intetipaolat uration mentioned in paper [1]. A type of configura
Note that fou=0.25 and 0.85 interpolation produces ad- tion is determined by the ratio between inner ant o
equate accuracy; fgn=0.75 — mean accuracy, and fq er radii at flat beam incidence or by the rationssn

=

n=0.65 — low accuracy. This is due to the fact thér inner radius and width of the Gaussian beam.

polation accuracy increases when a derivative efith | 2. Equations are derived for the first zero intigngosi-

terpolated function approximates a constant. tion. Tables of their roots are given.

It may be concluded that compatibility between tatcal 3. Numerical simulation implemented for the cakia-

calculations and numerical simulation results iy Végh. dent beams has fully confirmed theoretical preolfi
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