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Abstract 
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Introduction 

One of the simplest diffractive optical elements (DOE) is 
a circular plate with thickness step corresponding to phase 
difference of 180 degrees. Despite its design simplicity, this 
element happens to have several practical applications. 

In particular, such plates are used to align intensity of 
focused Gaussian beams [1]. Moreover, we mean not to 
focus on a ring/square, but somewhat differently – to ob-
tain a domain with dimensions close to diffraction limits 
with approximately uniform intensity (not necessarily with 
sharp edges). DOE proposed in paper [1] in the form of a 
ring or square step is the simplest element among all con-
sidered elements used to solve similar problems [2 – 4]. In 
paper [5], two stepped elements are used for one-
dimensional dynamic beam correction. 

Another application for phase-step plates is sharp fo-
cusing. Phase steps are used in accordance with the first 
Hermite-Gaussian mode to excite an electric-field longi-
tudinal component at the focus center; this was consid-
ered in papers [6 – 8]. It is shown in papers [9, 10] that a 
focal pattern and, accordingly, contribution of the longi-
tudinal component to the central part of focal domain is 
influenced by mutual arrangement of polarization axis 
and a phase step curve for the plate. Besides, in paper 
[11], the phase-step plate is used to study polarization 
sensitivity of a near-field microscope. 

Radial-step phase plates are also used for sharp focus-
ing and in polarization transformations [12]. In this case, 
they are capable to perform similar functions like either 
of multi-ring or multi-level phase plates [13 – 16]. Itera-
tive or other optimization algorithms are often used to 
calculate them. The advantage of simple elements (binary 
one- or two-ring) lies in their ability to analytically evalu-
ate their activity [17, 18]. 

Sharp focusing of radial-polarized beams is considered 
in paper [17]. Interrelation between width of a diaphragm 
ring with the introduced radial phase step and focal spot 
dimensions and intensity values is also studied there. It is 
shown that due to destructive interference generated by 
rings with different phases, it is possible to skip scalar limits 
related to the first zero of the zero-order Bessel function. The 

minimum focal spot size (FWHM = 0.33λ) is achieved when 
diaphragm ring width is 20 per cent of radius of a full aper-
ture. In this case, intensity of side lobes does not exceed 30 
per cent of a central peak. It is also shown that by introduc-
ing phase steps and simultaneously widening a ring aperture, 
it is possible to generate the focal spot not exceeding the size 
limit corresponding to a narrow ring aperture while intensity 
increases almost 6 times. Furthermore, side lobes embrace 
35 per cent of the central peak. 

Paper [18] cites evidence that two annular zones are 
sufficient for many problems. Analytical estimates are 
obtained for parameters of a two-zone element in off-axis 
scalar approximation; the element provides maximum 
values of interference maxima on optical axis. Zone radii 
coincided with zone-plate radii. However, a zone plate 
with free-space limiting numerical aperture has its central 
zone r1

 = 1.12λ in radius, and remaining zones are repre-
sented by rings less than λ/2 wide. In this case, decaying 
waves get mostly through a peripheral part of the optical 
element; they slightly affect distribution near optical axis. 
Therefore, it is possible to discuss influence of only one 
or two central zones. It is shown numerically and analyti-
cally that an optical microelement, consisting of only two 
axially aligned annular zones, can be used for sharp fo-
cusing of laser radiation. Moreover, the greatest focusing 
degree is achieved when the central zone is λ/2 in radius. 

Here, as in paper [18], influence of the total element 
(instead of the ring element) is regarded in far-field diffrac-
tion. Though a more accurate off-axis model is used in pa-
per [18], analytical calculation was carried out only for the 
optical axis field. The transverse in-plane field correspond-
ing to the lens focal plane is analyzed in this paper. 

1. Theoretical study of double-ring DOEs 
Let’s consider a phase DOE with radius r2; its structure 

is shown in Fig. 1. The phase is equal to zero in the internal 
circle of radius r1 and to 180 degrees in a ring between the 
radii r1 and r2. Let’s consider the field being generated in 
the lens focal plane when lighting this element. 

In this paper, we examine two types of incident 
beams: flat-top and Gaussian beams. 
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Fig. 1. Drawing of a double-ring phase DOE  

1.1. Focal field when lighting DOEs by flat-top beams 

The field amplitude in the lens focus plane is deter-
mined by the radially symmetrical Fourier transform as 
follows: 
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where A0(r) is the field amplitude in the input plane, J0(x) 
is the Bessel function of the zero order, k = 2π/λ is the 
wavenumber, λ is the wavelength of an illuminating 
beam, f is the focal length of a lens, which is combined 
with the a double-ring phase DOE. In our case, we have 
the following: 
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Substituting Eq. (2) in Eq. (1), we obtain the follow-
ing expression for the amplitude: 
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The zero-point amplitude is equal to the following: 
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A(0) = 0, when 2 2
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1 2 / 2r r>  A(0) > 0, 
otherwise A(0) < 0. 
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we see that a critical point will be always in zero. The 
second derivative is equal to the following: 
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wherefrom we obtain A"(0) = 0, when 4 4
1 2 / 2r r= ; provid-

ed 4 4
1 2 / 2r r>  A"(0) < 0 (maximum), otherwise A"(0) > 0 

(minimum). For 4 4
1 2 / 2r r=  an extremum shall be flat. 

Thus, using the Taylor series expansion, we can prove 
that this will be the maximum. 

Let us introduce the following notation: 

1 2/ ( 1)r rµ = ≤ . (5) 

Thus, the following three configurations are possible 

(Fig. 2): the negative minimum (provided 0 1/ 2≤ µ < ); 

the positive minimum (provided 41/ 2 1/ 2< µ <  ), and 

the positive maximum (provided 41/ 2 1< µ ≤ ). The 

fourth configuration, i.e. the negative maximum, is im-
possible. 

a)     b)     c)  
Fig. 2. Layout view of the amplitude near optical axis: 

configurations I (a), II (b), III (c) 

The zero amplitude position is obtained by setting the 
right-hand side of Eq. (3) equal to zero; when x = kρr2 / f, 
this gives the following equation: 

1 12 ( ) ( )J x J xµ µ = . (6) 

The first nonzero root of this equation is considered. 
The equation is solved numerically by using Bessel func-
tion tables, and then, if necessary, the root curve x0

 (µ) 
can be approached to the analytic curve. If we know x0, 
we can determine the radius of the dark ring as follows: 
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It is directly shown in Eq. (6) that at µ = 0 and µ = 1, 
x0

 = j1,1 is the first root of the function J1(x). Thus solving 
Eq. (6), we obtain the following values. 

Table 1. Zero amplitude position versus ring radius ratio 

µ 0 0.1 0.2 0.3 0.4 0.5 0.6 
x0 3.832 3.742 3.513 3.212 2.866 2.462 1.912 

µ 0.7 
1

0
2

−  
1

0
2

+  0.8 
4

1

2
 0.9 1 

x0 0.553 0 6.116 5.539 5.241 4.734 3.832 

1.2. Focal field when lighting DOEs by Gaussian beams 

In this case, the field amplitude in the input plane is as 
follows: 
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where σ is a beam-width determining parameter. It is im-
possible to make exact calculations here; however, we 
can obtain rather close approximation. Breaking down the 
element into two rings, we get the following: 

2 2
1 2

2 2

1

2 2
0 0

0

( )

d d

2 ( ).

r rr r

r

A

kr kr
e J r r e J r r

f f

B B B B B

− −
σ σ

+ − + + −

ρ =

   ρ ρ= − =   
   

= − = − +

∫ ∫  (9) 

The sum in parentheses can be determined with a rea-
sonable degree of accuracy using the tables given below, 
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if the pupil’s radius meets the condition r2
 >~ (2÷2.5)σ 

when an upper limit could be replaced by an infinite lim-
it. The following formula is given in tables presented in 
paper [19] (p. 186). 
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When ν = 0, the formula is simply as follows: 
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Using Eq. (10а), we obtain the following: 
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We can calculate the value of B+ with the specified 
degree of accuracy replacing a Gaussian function bell 
with a parabolic cone, when r1

 ≤ σ (a knee of the Gaussian 
curve). The case when this condition isn’t well fulfilled is 
uninteresting: an exterior ring has no meaningful effect. 
So, the result is limited to one circular hole to be lighted. 

Suppose the condition r1
 ≤ σ has been satisfied. Then 

the following approximation should be made with a small 
accuracy over the range of r ≤ r1: 

2

2 22
1 2

r

e r
−

σ ≈ α − α . (12) 

The values of α1 and α2 depend on used approximation 
and they are given below. Using Eq. (12), we receive the 
following: 
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The overall amplitude is equal to the following: 
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This shows that for large values of ρ decreasing is de-
termined with the first summand and the rate of decay is 
identical to that one valid for lighting with flat-top beams. 
When r1

 = 0 (no phase step), we get a trivial response: 
2
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which is the Gaussian beam. 

Before proceeding any further, it’s worthwhile to get 
at least one technique for finding the values α1 and α2. 
The simplest method, though probably not the best one in 
terms of its accuracy, is a collocation method. We equal 
zero and edge values as follows: 
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Substituting Eq. (15) in Eq. (14), we obtain the fol-
lowing: 
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The value of A (ρ = 0) can be calculated exactly with-
out any approximations made. It equals to the following: 
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Providing however that r2 is larger (see the line before 
Eq. (10)), the latter summand shall be neglected: 
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Configurations will be determined according to 
Eq. (17a) being similar for derivatives. We write out ac-
curate values, just as in Eq. (17), but they are less con-
venient for analysis due to their complexity. 

(0) 0A = , when 1 2ln 2 1.1774r = σ ≈ σ . (18) 

At less values of r1, we have A (0) < 0, otherwise we have 
A (0) > 0.  
The first derivative A' (ρ = 0) equals to zero and the sec-
ond one is as follows: 
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With disregard for the latter summand, we get the following: 
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(0) 0A′′ = , when 1 1.832r ≈ σ ,  (20) 

where 1.832 is the root of the equation 1 = (x2+2)e–x2/2. 
This corresponds to the flat maximum at a smaller vale of 
A" (0) > 0 (minimum), otherwise we have A" (0) < 0 (max-
imum). Configuration change takes place similarly as in 
case with flat-top beams (Fig. 2) 

Configuration I: r1 < 1.1774σ; 
Configuration II: 1.1774σ < r1 < 1.832σ; 
Configuration III: r1 > 1.832σ. 
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It is difficult to compare edges obtained from fully ex-
act expressions because of the fact that there are two radii, 
not one, in exact expression. However, we can compare 
them with those ones that will be used in Eq. (16). Using 
two summands of the Taylor series (J1(x) ≈ (x/2) – (x3/16), 
J2(x) ≈ (x2/8) – (x4/96)), the near-axis amplitude can be 
conceived of as follows: 
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Though Eq. (21) is approximate, the zero value is exact; 
it equals to the following: 
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wherefrom 

A(0) = 0 at r1 ≈ 1.15σ, (22) 
where 1.15 is the root of the equation x2(1+e–x2/2) = 2; it is 
somewhat less than the factor given in Eq. (18). The sec-
ond derivative is equal to the following:  
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wherefrom 

A′′(0) = 0 at r1 ≈ 1.687σ, (23) 

where 1.687 is the root of the equation x4(1+2e–x2/2) = 12; 
it is less than the factor given in Eq. (20). Overall, the ar-
ea of configuration II is narrower than that one obtained 
by exact calculation. It should be pointed out that the fac-
tor given in Eq. (22) and especially in Eq. (23) is larger 
than permitted; this is necessary to make the approxima-
tion mentioned in Eq. (12), on the basis of which Eq. (16) 
has been obtained, be good. 

Zero values of Eq. (16) shall be determined using the 
below tables. With the use of  

1 1( / );x k r f r= ρ = µ ⋅σ  

we have A (ρ) = 0 be written as follows: 
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The equation is solved for x at given µ. If we know the root 
of x0, the radius of the dark ring is determined as follows: 

0
0

x f

k
ρ = ⋅

µ σ
. (25) 

In contrast to Eq. (7), a real factor is not x0 itself, but 
x0 / µ. That’s why we added a proper line in the table of 
roots of equation (25) (implication of one more line will 
be clarified below). 

Table 2. Zero amplitude versus circle-and-beam radius ratio  

µ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.15 
x0 0 0.3043 0.51 0.669 0.79 0.879 0.936 0.961 0.948 0.888 0.755 0.464 0 

x0/µ ∞ 3.043 2.55 2.23 1.975 1.757 1.56 1.372 1.185 0.986 0.755 0.422 0 

2 lnµ − µ  0 0.3035 0.5075 0.658 0.766 0.833 0.858 0.836 0.756 0.584 0 – – 

 

In contrast to the flat case, when µ was within the 
range from 0 to 1 (though it had another definition there), 
here µ can theoretically possess any positive value, how-
ever really meaningful values are limited: when 
µ > 2 ÷ 2.5, this is equivalent to near-zero values with the 
amplitude sign reversal. Besides, Eq. (16) and therefore 
Eq. (25) are obtained on the assumption that µ <~ 1. An-
yway, the values larger than 1.15 (see. Eq. (22)) are not 
particularly of any interest. 

It is apparent from the above table that with reducing 
µ the radius ρ0 goes up with no limit as it must be. The 
amplitude constraint tends to the Gaussian curve that pos-
sesses no zeros. 

With small µ we can also determine the root value 
without the benefit of the tables. The right-hand side of the 
equation (24) at µ→0 and with a fixed value of x tends to 
zero much faster than the left-hand side; therefore x should 
be small, too. In this case, we can make the following ap-
proximations on the left-hand side of the equation: 
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/2 /2 1 2
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2 2 8
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e e

x x
−µ −µ µ≈ − ≈ ≈ ≈ . 

Then the left-hand side of the equation will be aver-
agely equal to the following: 

2
2 2 2 4 21 1 1

2 1 4
2 8 2 4

µµ ⋅ ⋅ + µ ⋅ ⋅ = µ + µ ≈ µ , 

so, we get the following equation:  
2 22 / (2 )

0 2 lnxe x− µµ = → = µ − µ . (26) 

The ratio 0 / 2 lnx µ = − µ  goes up with no limit 

when µ→0. 

2. Numerical simulation results 

Numerical simulation was implemented under the flat 
incident beam with the following parameter: the outer ra-
dius is r2

 = 100λ (λ is the wavelength of incident radiation 
equaled to 1 µm); the lens focal length is f = 400λ. Let S 
denote a ratio between the side lobe intensity and the cen-
tered intensity. The results are given in Fig. 3-6. 

As we can see, when the size of the central light 
spot decreases, the energy goes out of it into a periph-
eral ring. 
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a)     b)  
Fig.  3. Focusing results for the element with phase step radius r1 =  0.6r2: the element’s interior-part field (dashed line, 

FWHM =  3.43λ, S =  0.015), the element’s front-end field (solid line, FWHM =  1.74λ, S =  0.123) and their superposition (dotted line, 
FWHM =  1.2λ, S =  1.6). Amplitudes (а) and intensities (b) are shown 

 
Fig. 4. Focusing results for: r1 =  0 (FWHM =  2.05λ, dotted 

line), r1 =  0.25r2 (FWHM =  1.91λ, dashed line), and r1 =  0.5r2 
(FWHM =  1.51λ, solid line) 

Fig. 5 shows that it is also possible to obtain very 
small sizes for the central spot through its very low 
brightness and growing side lobes. 

If we compare numerical simulation results with theo-
retical calculations, they should nearly coincide. Sources 
of discrepancy are as follows: computational errors in 
solving the Eq. (6); computation errors of numerical sim-
ulation; visual accuracy of determining the zero position 
in graphs obtained by simulation. 

a)     b)  
Fig. 5. Focusing results for: r1 =  0.6r2 (FWHM =  1.22λ, dashed line), r1 =  0.65r2 (FWHM =  0.96λ, solid line), and r1 =  0.7r2 

(FWHM =  0.35λ, dotted line) (а); central part for r1 =  0.7r2 (b) 

 
Fig. 6. Focusing results for: r1 =  0.75r2 (dashed line), r1 =  0.8r2 

(solid line), r1 =  0.85r2 (FWHM =  3.9λ, dotted line) 

By parameter values from Eq. (7) used in simulation, 
we get the following: 

0 0(0,637 )xρ = ⋅λ . (27) 

Values of the radius of the first dark ring calculated 
by Eq. (27) and determined according to certain intensity 
graphs obtained from simulation are shown in Table 3. 
Values of x0 are taken from Table 1 or obtained by inter-
polation. 

Table 3. Comparison of zero points discovered theoretically and by simulation    

µ 0 0.25 0.5 0.6 0.65 0.7 0.75 0.8 0.85 

ρ0 as in (27) 2.44 ≈2.148 1.568 1.218 ≈0.785 0.352 ≈3.726 3.528 ≈3.289 

ρ0 as in graph ≈2.5 ≈2.2 ≈1.5 ≈1.2 ≈0.85 ≈0.32 ≈3.75 ≈3.5 ≈3.3 
 
Values of the radius are given in units of wavelength. 

Designated values mean the use of linear interpolation. 
Note that for µ = 0.25 and 0.85 interpolation produces ad-
equate accuracy; for µ = 0.75 – mean accuracy, and for 
µ = 0.65 – low accuracy. This is due to the fact that inter-
polation accuracy increases when a derivative of the in-
terpolated function approximates a constant. 
It may be concluded that compatibility between theoretical 
calculations and numerical simulation results is very high. 

Conclusion 
Analysis of operation of double-ring optical elements 

allowed us to come to the following conclusions: 
1.  Three significant configurations for amplitude (two – 

for intensity) are possible near optical axis. Edge con-
figurations are supposed to be the centered zero value 

and the largest flat-topped value similar to the config-
uration mentioned in paper [1]. A type of configura-
tion is determined by the ratio between inner and out-
er radii at flat beam incidence or by the ratio between 
inner radius and width of the Gaussian beam. 

2.  Equations are derived for the first zero intensity posi-
tion. Tables of their roots are given. 

3.  Numerical simulation implemented for the case of inci-
dent beams has fully confirmed theoretical predictions. 
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