(44-6) 05 * << * >> * Russian * English * Content * All Issues

Excitation of surface plasmon waves with a nanoantenna: simple analytical solution and its numerical verification
A.V. Dyshlyuk 1,2,3, A.A. Bogdanov 4, O.B. Vitirk 1,2

IACP FEB RAS, 690041, Russia, Vladivostok, 5, Radio Str.,
Far Eastern Federal University, 690091, Russia, Vladivostok, 8, Sukhanova Str.,
Vladivostok State University of Economics and Service, 690014, Russia, Vladivostok, 41, Gogolya Str.,
ITMO University, 197101, Russia, St. Petersburg, 49, Kronverskiy Ave.

 PDF, 1344 kB

DOI: 10.18287/2412-6179-CO-755

Pages: 893-900.

Full text of article: Russian language.

Abstract:
In this work, we demonstrate a simple analytical approach to the problem of surface plasmon polaritons excitation with a metallic nanoantenna placed above a metal surface. The method uses the reciprocity theorem and is similar to the calculation of amplitudes of dielectric waveguide modes excited by a current distribution. To maximize clarity of the demonstration, we formulate the problem in a simple two-dimensional geometry. The analytical results are shown to agree well with the numerical solution obtained by finite elements in frequency domain and finite difference in time domain methods.

Keywords:
Freeform surface, LED optics, refractive optics, nonimaging optics, intensity distribution, computation methods.

Citation:
Byzov EV, Doskolovich LL, Kravchenko SV, Kazanskiy NL. Analytical design of refractive optical elements generating a prescribed two-dimensional intensity distribution. Computer Optics 2020; 44(6): 883-892. DOI: 10.18287/2412-6179-CO-818.

Acknowledgements:
This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-02-00556А).

References:

  1. Wood R. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc 1902; 18: 269.
  2. Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J Opt Soc Am 1941; 31(3): 213.
  3. Ritchie RH. Plasma losses by fast electrons in thin films. Phys Rev 1957; 106(5): 874-881.
  4. Dionne JA, Lezec HJ, Atwater HA. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett 2006; 6(9): 1928-1932.
  5. Sorger VJ, et al. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat Commun 2011; 2(1): 331.
  6. Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing. Nat Photon 2009; 3(7): 388-394.
  7. Colombelli R, et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl Phys Lett 2001; 78(18): 2620.
  8. Hu Q, Williams BS, Kumar S, Callebaut H, Kohen S, Reno JL. Resonant-phonon-assisted THz quantum-cascade lasers with metal–metal waveguides. Semicond Sci Technol 2005; 20(7): S228-S236.
  9. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater 2008; 7(6): 442-453.
  10. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators B Chem 1999; 54(1-2): 3-15.
  11. Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev 2011; 111(6): 3828-3857.
  12. Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008; 453(7196): 757-760.
  13. Lee J, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 2014; 511(7507): 65-69.
  14. Vampa G, et al. Plasmon-enhanced high-harmonic generation from silicon. Nat Phys 2017; 13(7): 659-662.
  15. Talley CE, et al. Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 2005; 5(8): 1569-1574.
  16. McFarland AD, Young MA, Dieringer JA, Van Duyne RP. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 2005; 109(22): 11279-11285.
  17. Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat Phys 2013; 9(6): 329-340.
  18. Andersen ML, Stobbe S, Sørensen AS, Lodahl P. Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nat Phys 2011; 7(3): 215-218.
  19. Maier SA. Plasmonics: fundamentals and applications. Springer Science & Business Media; 2007.
  20. Brolo AG. Plasmonics for future biosensors. Nat Photon 2012; 6(11): 709-713.
  21. MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI. Ultrafast active plasmonics. Nat Photon 2009; 3(1): 55-58.
  22. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010; 9(3): 193-204.
  23. Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photon 2012; 6(11): 737-748.
  24. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM. Theory of surface plasmons and surface-plasmon polaritons. Reports Prog Phys 2007; 70(1): 1-87.
  25. Lévêque G, Martin OJF. Optimization of finite diffraction gratings for the excitation of surface plasmons. J Appl Phys 2006; 100(12): 124301.
  26. Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys A 1968; 216: 398-410.
  27. Kretschmann E, Raether H. Notizen: radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 1968; 23(12): 2135-2136.
  28. Permyakov DV, Mukhin IS, Shishkin II, Samusev AK, Belov PA, Kivshar YS. Mapping electromagnetic fields near a subwavelength hole. JETP Lett 2014; 99(11): 622-626.
  29. Renger J, Grafström S, Eng LM. Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films. Phys Rev B 2007; 76(4): 1-7.
  30. Zhao C, Zhang J, Liu Y. Light manipulation with encoded plasmonic nanostructures. EPJ Appl Metamaterials 2014; 1: 6.
  31. O’Connor D, Ginzburg P, Rodriguez-Fortuno FJ, Wurtz GA, Zayats AV. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat Commun 2014; 5: 5327.
  32. Rodriguez-Fortuno FJ, et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 2013; 340(6130): 328-330.
  33. Krasnok A, Li S, Lepeshov S, Savelev R, Baranov DG, Alú A. All-optical switching and unidirectional plasmon launching with nonlinear dielectric nanoantennas. Phys Rev Appl 2018; 9(1): 014015.
  34. Petrov MI, Sukhov SV, Bogdanov AA, Shalin AS, Dogariu A. Surface plasmon polariton assisted optical pulling force. Laser Photon Rev 2016; 10(1): 116-122.
  35. Bigourdan F, Hugonin J-P, Marquier F, Sauvan C, Greffet J-J. Nanoantenna for electrical generation of surface plasmon polaritons. Phys Rev Lett 2016; 116(10): 106803.
  36. Dvoretckaia L, Ladutenko K, Mozharov A, Zograf G, Bogdanov A, Mukhin I. Electrically driven metal and all-dielectric nanoantennas for plasmon polariton excitation. J Quant Spectrosc Radiat Transf 2020; 244: 106825.
  37. Sinev I, Komissarenko F, Iorsh I, Permyakov D, Samusev A, Bogdanov A. Steering of guided light with dielectric nanoantennas. ACS Photon 2020; 7(3): 680-686. DOI: 10.1021/acsphotonics.9b01515.
  38. Sinev IS, et al. Chirality driven by magnetic dipole response for demultiplexing of surface waves. Laser Photon Rev 2017; 11(5): 1700168.
  39. Evlyukhin AB, Bozhevolnyi SI. Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations. Phys Rev B 2005; 71(13): 134304.
  40. Søndergaard T, Bozhevolnyi SI. Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study. Phys Rev B Condens Matter 2004; 69(4): 1-10.
  41. Snyder AW, Love JD. Optical waveguide theory. Chapman and Hall; 1983.
  42. Liu H, et al. Surface plasmon generation by subwavelength isolated objects. IEEE J Sel Top Quantum Electron 2008; 14(6): 1522-1529.
  43. Baron A, et al. Generation of surface plasmons with compact devices. Proc SPIE 2013; 8627: 86270W.
  44. Novotny L, Hecht B. Principles of nano-optics. Cambridge: Cambridge University Press; 2006.
  45. Haynes WM. CRC handbook of chemistry and physics. 95th ed. Boca Raton, London, New York: CRC Press; 2014.
  46. Born M, Wolf E. Principles of optics. Cambridge: Cambridge University Press; 1999.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20