(45-1) 01 * << * >> * Russian * English * Content * All Issues

Evolution of an optical vortex with initial fractional topological charge
V.V. Kotlyar 1,2, A.G. Nalimov 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 2713 kB

DOI: 10.18287/2412-6179-CO-766

Pages: 5-12.

Full text of article: Russian language.

In a number of theoretical (J. Opt. 6, 259 (2004)) and experimental (Opt Express 19, 5760 (2011)) works, an original fractional-TC optical vortex (with TC standing for topological charge) was shown to evolve into an integer optical vortex whose TC is equal to the nearest (i) smaller integer, if the fractional part is smaller than 1/2, and (ii) larger we show that the initial fractional optical vortex evolves into an integer optical vortex with TC equal to the nearest (i) smaller integer, if the fractional part is smaller than 0.12, and (ii) larger integer, if the fractional part is larger than 0.12. This can be explained by the fact that the additional center integer, if the fractional part is larger than 1/2. In this work, using numerical simulation, of singularity is generated on the beam periphery characterized by near zero-intensity (a millionth of the maximum), thus prohibiting the experimental detection, but allowing a numerical assessment.

optical vortex, fractional topological charge, near field, far field.

Kotlyar VV, Nalimov AG. Evolution of an optical vortex with initial fractional topological charge. Computer Optics 2021; 45(1): 5-12. DOI: 10.18287/2412-6179-CO-766.

The work was partly funded by the Russian Foundation for Basic Research grant #18-29-20003 and the RF Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS.


  1. Alperin SN, Niederriter RD, Gopinath JT, Siemens ME. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt Lett 2016; 41(21): 5019-5022.
  2. Kotlyar VV, Kovalev AA, Porfirev AP. Calculation of fractional orbital angular momentum of superpositions of optical vortices by intensity moments. Opt Express 2019; 27(8): 11236-11251. DOI: 10.1364/OE.27.011236.
  3. Volyar A, Bretsko M, Akimova Ya, Egorov Yu. Vortex avalanche in the perturbed singular beams. J Opt Soc Am A 2019; 36(6): 1064-1071.
  4. Zhang Y, Yang X, Gao J. Orbital angular momentum transformation of optical vortex with aluminium metasurfaces. Sci Rep 2019; 9: 9133.
  5. Zhang H, Li X, Ma H, Tang M, Li H, Tang J, Cai Y. Grafted optical vortex with controllable orbital angular momentum distribution. Opt Express 2019; 27(16): 22930-22938.
  6. Volyar AV, Brecko MV, Akimova YE, Egorov YA. Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum. Computer Optics 2019; 43(4): 517-527. DOI: 10.18287/2412-6179-2019-43-4-517-527.
  7. Volyar AV, Brecko MV, Akimova YE, Egorov YA, Milukov VV. Sectorial perturbation of vortex beams: Shannon entropy, orbital angular momentum and topological charge. Computer Optics 2019; 43(5): 723-734. DOI: 10.18287/2412-6179-2019-43-5-723-734.
  8. Kotlyar VV, Kovalev AA, Volyar AV. Topological charge of a linear combination of optical vortices: topological competition. Opt Express 2020; 28(6): 8266-8281. DOI: 10.1364/OE.386401.
  9. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6: 259-268.
  10. White AG, Smith CP, Heckenberg NR, Rubinsztein-Dunlop H, McDuff R, Weiss CO, Tamm C. Interferometric measurements of phase singularities in the output of a visible laser. J Mod Opt 1991; 38(12): 2531-2541.
  11. Hickmann JM, Fonseca EJS, Soares WC, Chavez-Cerda S. Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum. Phys Rev Lett 2010; 105: 053904.
  12. Mourka A, Baumgartl J, Shanor C, Dholakia K, Wright EM. Visualization of the birth of an optical vortex using diffraction from a triangular aperture. Opt Express 2011; 19(7): 5760-5771.
  13. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  14. Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New J Phys 2004; 6: 71.
  15. Gotte JB, Franke-Arnold S, Zambrini R, Barnett SM. Quantum formulation of fractional orbital angular momentum. J Mod Opt 2007; 54(12): 1723-1738.
  16. Jesus-Silva AJ, Fonseca EJS, Hickmann JM. Study of the birth of a vortex at Fraunhofer zone. Opt Lett 2012; 37(21): 4552-4554.
  17. Wen J, Wang L, Yang X, Zhang J, Zhu S. Vortex strength and beam propagation factor of fractional vortex beams. Opt Express 2019; 27(4): 5893-5904.
  18. Nalimov AG, Kotlyar VV, Soifer VA. Modeling of an image forming by a zone plate in X-Ray. Computer Optics 2011; 35(3): 290-296.
  19. Volovik GE, Mineev VP. Line and point singularitie in superfluid He3. JETP Lett 1976; 24: 561-563.
  20. Jang J, Ferguson DG, Vakarynk V, Budakian R, Chung SB, Goldbart PM, Maeno Y. Observation of half-height magnetization spets in S2RuO4. Science 2011; 331: 186-188.
  21. Alexeyev CN, Egorov YA, Volyar AV. Mutual transformation of fractional-order and integer-order optical vortices. Phys Rev A 2017; 96: 063807.
  22. Rubo YG. Half vortices in exciton polariton condensate. Phys Rev Lett 2007; 99: 106401.
  23. Flayac H, Shelukh IA, Solnyshkov DD, Malpuech G. Topological stability of the half-vortices in spinor exciton-polariton condensates. Phys Rev B 2010; 81: 045318.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20