(45-2) 03 * << * >> * Russian * English * Content * All Issues

Digital analysis of a speckle pattern of chaotic mode composition and restoration of a regular intensity pattern after a multimode fiber
A.V. Volyar 1, M.V. Bretsko 1, Y.E. Akimova 1, Y.A. Egorov 1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
Academician Vernadsky 4, 295007, Simferopol, Republic of Crimea, Russia

 PDF, 1770 kB

DOI: 10.18287/2412-6179-CO-831

Pages: 179-189.

Full text of article: Russian language.

A process of mode matching in a chaotic speckle pattern without a reference beam responsible for the formation of a holographic grating was studied experimentally and theoretically. Our approach was based on measuring the amplitudes and phases of the Hermite-Gauss (HG) and Laguerre-Gauss (LG) modes in a speckle pattern formed by the radiation of a multimode gradient fiber. The speckle pattern was formed in a hologram of a spatial light modulator using a multimode gradient fiber model while taking into account the mode and polarization dispersion, as well as random phase jumps of each eigenmode. We managed to match 210 modes of the speckle pattern and restore not only the original pattern, but also each structured LG mode and the entire chain of HG eigenmodes.

information optics, vortex beams sorting, Shannon entropy.

Volyar AV, Bretsko MV, Akimova YE, Egorov YA. Digital analysis of a speckle pattern of chaotic mode composition and restoration of a regular intensity pattern after a multimode fiber. Computer Optics 2021; 45(2): 179-189. DOI: 10.18287/2412-6179-CO-831.

This work was partly funded by the Russian Foundation for Basic Research under the research projects No. 19-29-01233 (Simulation results), No. 20-37-90066 (Theoretical results), No. 20-37-90068 (Experiment), and No. 20-47-910002 Republic of Crimea ("Mode matching" Section).


  1. Franson M. Laser speckle and applications in optics. London: Academic Press Inc; 1979.
  2. Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation. Nat Photonics 2010; 4: 388-394.
  3. Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres. Nat Photonics 2015; 9: 529-535.
  4. Kirilenko MS, Khonina SN. Simulation of optical signals propagation in a random media. Proceeding International Conference Information Technology and Nanotechnology 2016; 1638: 55-65. DOI: 10.18287/1613-0073-2016-1638-55-65.
  5. Yeh Ch. Handbook of fiber optics: theory and applications. London: Academic Press Inc; 1990.
  6. Kumar A, Chatak A. Polarization of light with applications in optical fiber. Washington: SPIE Press; 2011.
  7. Abdullаеv SS, Zaslavskii GМ. The speckle structure of an optical field in multimode waveguides. Kvantovaya Elektronika 1987; 14(7): 1475-1484.
  8. Boonzajer Flaes DE, Stopka J, Turtaev S, de Boer JF, Tyc T, Čižmár T. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Phys Rev Lett 2018; 120: 233901.
  9. Shemirani MB, Mao W, Panicker RA, Kahn JM. Principal modes in graded-index multimode fiber in presence of spatial-and polarization-mode coupling. J Light Technol 2009; 27(10): 1248-1261.
  10. Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fiber-based imaging. Nat Commun 2012; 3: 1027.
  11. Leonardo D, Bianchi S. Hologram transmission through multi-mode optical. Opt Express 2011; 19: 247-254.
  12. Papadopoulos IN, Farahi S, Moser C, Psaltis D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt Express 2012; 20: 10583-10590.
  13. Carpenter J, Eggleton BJ, Schröder J. 110×110 optical mode transfer matrix inversion. Opt Express 2014; 22: 96-101.
  14. Ploschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres. Supplementary information. Nat Photonics 2015; 9: 529-535. Source: <https://www.nature.com/articles/nphoton.2015.112>.
  15. Czarske JW, Haufe D, Koukourakis N, Büttner L. Transmission of independent signals through a multimode fiber using digital optical phase conjugation. Opt Express 2016; 24(13): 15128-15136.
  16. Ma Ch, Di J, Dou J, Li P, Xiao F, Liu K, Bai X, Zhao J. Structured light beams created through a multimode fiber via virtual Fourier filtering based on digital optical phase conjugation. Appl Opt 2020; 59(3): 701-705.
  17. Mounaix M, Fontaine NK, Neilson DT, Carpenter J. Time reversal of optical waves. Frontiers in Optics and Laser Science APS DLS Conference Papers 2019; FTu6B5.
  18. Büttner L, Thümmler M, Czarske J. Velocity measurements with structured light transmitted through a multimode optical fiber using digital optical phase conjugation. Opt Express 2020; 28(6); 8064-8075.
  19. Yariv A. Three-dimensional pictorial transmission in optical fibers. Appl Phys Lett 1976; 28(2): 88-89.
  20. McMichael I, Beckwith P. Correction of polarization and modal scrambling in multimode fibers by phase conjugation. Opt Lett 1987; 12(7): 507-509.
  21. Kukhtarev MV, Volyar AV, Gnatovsky AV. Polarized phase conjugation and some principles of parallel information transmission by a fiber/crystal system. J Nonlinear Opt Phys Mater 1993; 2(3): 447-464.
  22. Khonina SN, Striletz AS, Kovalev AA, Kotlyar VV. Propagation of laser vortex beams in a parabolic optical fiber. Proc SPIE 2010; 7523: 75230B. DOI: 10.1117/12.854883.
  23. Kirilenko MS, Zubtsov RO, Khonina SN. Calculation of eigenfunctions of a bounded fractional Fourier transform. Computer Optics 2015; 39(3): 332-338. DOI: 10.18287/0134-2452-2015-39-3-332-338.
  24. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: Mode division multiplexing and multimode self-imaging. In Book: Yasin M, Harun SW, Arof H, eds. Rijeka: InTech; 2012: 327-352. DOI: 10.5772/28067.
  25. Fontaine NK, Ryf R, Chen H, Neilson DT, Kim K, Carpenter J. Laguerre-Gaussian mode sorter. Nat Commun 2019; 10: 1865.
  26. Zhu Z, Hay D, Zhou Y, Fyffe A, Kantor B, Agarwal GS, Boyd RW, Shi Z. Single-shot direct tomography of the complete transverse amplitude, phase and polarization structure of a light field. Phys Rev Appl 2019; 12: 034036.
  27. Zhu Z, Hay D, Zhou Y, Fyffe A, Kantor B, Agarwal GS, Boyd RW, Shi Z. Single-shot direct tomography of the complete transverse amplitude, phase and polarization structure of a light field: Supplemental material. Phys Rev Appl 2019; 12: 034036. Source: <https://journals.aps.org/prapplied/supplemental/10.1103/PhysRevApplied.12.034036>.
  28. Volyar AV, Bretsko M, Akimova Ya, Egorov Yu. Measurement of the vortex spectrum in a vortex beam array without cuts and gluing of the wavefront. Opt Lett 2018; 43(22): 5635-5638.
  29. Volyar AV, Bretsko M, Akimova Ya, Egorov Yu. Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens. Appl Opt 2019; 58(21): 5748-5755.
  30. Volyar A, Abramochkin E, Egorov Yu, Bretsko M, Akimova Ya. Fine structure of perturbed Laguerre–Gaussian beams: Hermite–Gaussian mode spectra and topological. Applied Optics 2020; 59(25): 7680-7687.
  31. Kotlyar VV, Kovalev AA, Nalimov AG. Propagation of hypergeometric laser beams in a medium with the parabolic refractive index. J Opt 2013; 15(12): 125706. DOI: 10.1088/2040-8978/15/12/125706.
  32. Snyder AW, Love JD. Optical waveguide theory. London: Chapman and Hall Ltd; 1983.
  33. Marcuse D. Losses and impulse response of a parabolic index fiber with random bends. The Bell System Technical Journal 1973; 52(8): 1423-1437.
  34. Abramochkin EG, Volostnikov VG. Spiral light beams. Physics–Uspekhi 2004; 47(12): 1177-1203. DOI: 10.1070/PU2004v047n12ABEH001802.
  35. Shen Y, Meng Y, Fu X, Gong M. Hybrid topological evolution of multi-singularity vortex beams: generalized nature for helical-Ince–Gaussian and Hermite–Laguerre–Gaussian modes. Jour Opt Soc Am A 2019; 36(4): 578-587.
  36. Volyar AV, Zilaitis VZ, Shvedov VG. Optical eddies in small-mode fibers: II. The spin-orbit interaction. Optics and Spectroscopy 1998; 86(4): 593-598.
  37. Alexeyev CN, Volyar AV, Yavorsky MA. Transformations of optical vortices in elliptical and anisotropic fibers. J Opt A–Pure Appl Opt 2007; 9(4): 387-394.
  38. Ahmad R, Yan MF, Nicholson JW, Abedin KS, Westbrook PS, Headley C, Wisk PW, Monberg EM, DiGiovanni D.J. Polarization-maintaining, large-effective-area, higher-order-mode fiber. Opt Lett 2017; 42(13): 2591-2594.
  39. Eftimov TA, Bock WJ. Analysis of the polarization behavior of hybrid modes in highly birefringent fibers. J Light Technol 1998; 16(6): 998-1005.
  40. Yariv A, Yeh P. Optical waves in crystals. New York: John Wiley and Sons Publication; 1987.
  41. Woliński TR. I Polarimetric optical fibers and sensors. Progress in Optics 2000; 40: 1-75.
  42. Varnham MP, Payne DN, Love JD. Fundamental limits to the transmission of linearly polarized light by birefringent optical fibers. Electron Lett 1984; 22(1): 55-56.
  43. Goodman JW. Statistical optics. New York: John Wiley and Sons Publication; 2000.
  44. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory and Neural Networks 2001; 10(4): 241-255.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20