(45-3) 05 * << * >> * Russian * English * Content * All Issues

Signal of an autocorrelation low-coherence interferometer probing a layered object by a wave-field with wide angular spectrum
D.V. Lyakin 1, V.P. Ryabukho 1

Institute of Precision Mechanics and Control of the Russian Academy of Sciences,
410028, Saratov, Russia, Rabochaya, 24

 PDF, 1080 kB

DOI: 10.18287/2412-6179-CO-821

Pages: 340-349.

Full text of article: Russian language.

The effect of the width of the angular spectrum (numerical aperture) of a broadband-frequency wave-field probing a layered object on the signal of an autocorrelation low-coherence interferometer (ALCI) under spatially coherent and incoherent illumination of the entrance pupil is considered. It is found that under incoherent illumination an increase in the width of the angular spectrum of the field leads to a decrease in the amplitude, a change in the shape and position of the measuring signals of the interferometer due to decorrelation of the object field partial components which have reflected from various interlayer boundaries inside the object. In the case of coherent illumination, the ALCI signal is formed in a confocal mode, which leads to the amplitude extraction of the measurement signals are determined by the mutual correlations between a partial component reflected from the boundary on which the probing field was focused, and partial components of this field which have reflected from other boundaries within the object. This effect makes it possible to determine parameters of the internal layered structure of an object doing without apriori structure-related information. In this case, an increase in the numerical aperture of the probing light beam leads to an increase in the systematic error in determining the optical thicknesses of the layers, which can be estimated on the basis of the obtained expressions.

interferometry, coherence, autocorrelation low-coherence interferometer, layered object, angular spectrum, numerical aperture.

Lyakin DV, Ryabukho VP. Signal of an autocorrelation low-coherence interferometer probing a layered object by a wave-field with wide angular spectrum. Computer Optics 2021; 45(3): 340-349. DOI: 10.18287/2412-6179-CO-821.

This work was supported by the RF Ministry of Science and Higher Education within a government project of the Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Ref. No. AAAA-A18-118042790042-4.


  1. Drexler W, Fujimoto JG, eds. Optical coherence tomography. Technology and applications. Berlin: Springer; 2008. ISBN: 978-3-540-77550-8.
  2. Dubois A, ed. Handbook of full-field optical coherence microscopy: technology and applications. Singapore: Pan Stanford Publishing Pte Ltd; 2016. ISBN: 978-981-4669-16-0.
  3. Rao Y, Jackson DA. Recent progress in fibre optic low-coherence interferometry. Meas Sci Technol 1996; 7(7): 981-999. DOI: 10.1088/0957-0233/7/7/001.
  4. Ford HD, Beddows R, Casaubieilh P, Tatam RP. Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems. J Mod Opt 2005; 52(14): 1965-1979. DOI: 10.1080/09500340500106774.
  5. Feldchtein F, Bush J, Gelikonov GV, Gelikonov VM, Piyevsky S. Cost-effective all-fiber autocorrelator-based 1300-nm OCT system. Proc SPIE 2005; 5690: 349-355. DOI: 10.1117/12.589502.
  6. Oh WY, Bouma BE, Iftimia N, Yelin R, Tearney GJ. Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging. Opt Express 2006; 14(19): 8675-8684. DOI: 10.1364/oe.14.008675.
  7. Ford HD, Tatam RP. Fibre imaging bundles for full-field optical coherence tomography. Meas Sci Technol 2007; 18(9): 2949-2957. DOI: 10.1088/0957-0233/18/9/027.
  8. Bachmann AH, Michaely R, Lasser T, Leitgeb RA. Dual beam heterodyne Fourier domain optical coherence tomography. Opt Express 2007; 15(15): 9254-9266. DOI: 10.1364/OE.15.009254.
  9. Wang C, Zhang Q, Wang Y, Zhang X, Zhang L. Long-range common-path spectral domain optical coherence tomography. Opt Express 2019; 27(9): 12483-12490. DOI: 10.1364/OE.27.012483.
  10. Takada K, Chida K, Noda J, Nakajima S. Development of a trench depth measurement system for VLSI dynamic random access memory vertical capacitor cells using an interferometric technique with a Michelson interferometer. Appl Opt 1989; 28(15): 3373-3381. DOI: 10.1364/AO.28.003373
  11. Fercher AF, Mengedoht K, Werner W. Eye length measurment by interferometry with partially coherent light. Opt Lett 1988; 13(3): 186-188. DOI: 10.1364/ol.13.000186.
  12. Hitzenberger CK. Measurement of corneal thickness by low coherence interferometry. Appl Opt 1992; 31(31): 6637-6642. DOI: 10.1364/AO.31.006637.
  13. Kononenko VV, Konov VI, Pimenov SM, Volkov PV, Goryunov AV, Ivanov VV, Novikov MA, Markelov VA, Tertyshnik AD, Ustavshchikov SS. Control of laser machining of polycrystalline diamond plates by the method of low-coherence optical interferometry. Quantum Electronics 2005; 35(7): 622-626. DOI: 10.1070/qe2005v035n07abeh002902.
  14. Volkov PV, Goryunov AV, Luk’yanov AY, Tertyshnik AD. Measurements of the semiconductor substrate thickness with a low-coherence tandem interferometer at a nonstationary temperature. Tech Phys Lett 2015; 41(2): 110-112. DOI: 10.1134/S1063785015020133.
  15. Lychagov VV, Lyakin DV, Modell MD, Ryabukho VP. Low-coherent autocorrelation interferometry of scattering and layered media [In Russian]. Computer Optics 2007; 31(3): 40-51.
  16. Model M, Ryabukho V, Lyakin D, Lychagov V, Vitkin E, Itzkan I, Perelman L. Autocorrelation low coherence interferometry. Opt Commun 2008; 281(8): 1991-1996. DOI: 10.1016/j.optcom.2007.12.043.
  17. Abdulhalim I. Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography. Annalen der Physik 2012; 524(12): 787-804. DOI: 10.1002/andp.201200106.
  18. Lyakin DV, Ryabukho VP. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy. Quantum Electron 2013; 43(10): 949-957. DOI: 10.1070/QE2013v043n10ABEH015187.
  19. Gao W. Image contrast reduction mechanism in full-field optical coherence tomography. J Microsc 2016; 261(3): 199-216. DOI: 10.1111/jmi.12333.
  20. Dubois A. Focus defect and dispersion mismatch in full-field optical coherence microscopy. Appl Opt 2017; 56(9): D142-D150. DOI: 10.1364/AO.56.00D142.
  21. Grebenyuk AA, Ryabukho VP. Coherence effects of thick objects imaging in interference microscopy. Proc SPIE 2012; 8427: 84271M. DOI: 10.1117/12.922108.
  22. Arieli Y, Epshtein S, Harris A, Yaacubov I, Cohen Y. Full field tomography using interference fringes casting of a non spatially-coherent extended spectrally modulated broadband light source. Opt Commun 2018; 407(15): 426-431. DOI: 10.1016/j.optcom.2017.08.027.
  23. Ryabukho VP, Lychagov VV, Lyakin DV, Smirnov IV. Effect of decoherence of optical field with broad angular spectrum upon propagation through transparent media interfaces. Opt Spectrosc 2011; 110(5): 802-805.  DOI: 10.1134/S0030400X11050134.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20