(45-4) 04 * << * >> * Russian * English * Content * All Issues

Fourier-Bessel beams of finite energy
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, D.S. Kalinkina 2, E.S. Kozlova 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1052 kB

DOI: 10.18287/2412-6179-CO-864

Pages: 506-511.

Full text of article: Russian language.

In this paper, we consider a new type of Bessel beams having Fourier-invariance property and, therefore, called Fourier-Bessel beams. In contrast to the known Bessel beams, these beams have weak side lobes. Analytical expressions for the complex amplitude of the proposed field in the initial plane of the source and in the far field region have been obtained. It is shown that the proposed Fourier-Bessel beams have a finite energy, although they do not have a Gaussian envelope. Their complex amplitude is proportional to a fractional-order Bessel function (an odd integer divided by 6) in the initial plane and in the Fraunhofer zone. The Fourier-Bessel modes have a smaller internal dark spot compared to the Laguerre-Gauss modes with a zero radial index. The proposed beams can be generated with a spatial light modulator and may find uses in telecommunications, interferometry, and the capture of metal microparticles.

optical vortices, Fourier-invariant beams, Bessel beams.

Kotlyar VV, Kovalev AA, Kalinkina DS, Kozlova ES. Fourier-Bessel beams of finite energy. Computer Optics 2021; 45(4): 506-511. DOI: 10.18287/2412-6179-CO-864.

This work was supported by the RF Ministry of Science and Higher Education within a government project of FSRC "Crystallography and Photonics" RAS (Sections "Introduction" and "Conclusion"), the Russian Foundation for Basic Research under RFBR project No 18-29-20003 (theoretical research), and the Russian Science Foundation under project No18-19-00595 (numerical simulations).


  1. Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. J Opt Soc Am A 1987; 4(4): 651-654. DOI: 10.1364/JOSAA.4.000651.
  2. Gutiérrez-Vega JC, Iturbe-Castillo MD, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams. Opt Lett 2000; 25(20): 1493-1495. DOI: 10.1364/OL.25.001493.
  3. Bandres MA, Gutiérrez-Vega JC, Chávez-Cerda S. Parabolic nondiffracting optical wave fields. Opt Lett 2004; 29(1): 44-46. DOI: 10.1364/OL.29.000044.
  4. McLeod JH. The axicon: a new type of optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
  5. Indebetouw G. Nondiffracting optical fields: some remarks on their analysis and synthesis. J Opt Soc Am A 1989; 6(1): 150-152. DOI: 10.1364/JOSAA.6.000150.
  6. Kotlyar VV, Kovalev AA, Porfirev AP. Optimal phase element for generating a perfect optical vortex. J Opt Soc Am A 2016; 33(13): 2376-2384. DOI: 10.1364/JOSAA.33.002376.
  7. Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Opt Commun 1987; 64(6): 491-495. DOI: 10.1016/0030-4018(87)90276-8.
  8. Caron CFR, Potvliege RM. Bessel-modulated Gaussian beams with quadratic radial dependence. Opt Commun 1999; 164(1-3): 83-93. DOI: 10.1016/S0030-4018(99)00174-1.
  9. Li G, Lee H, Wolf E. New generalized Bessel-Gauss laser beams. J Opt Soc Am A 2004; 21(4): 640-646. DOI: 10.1364/JOSAA.21.000640.
  10. Kotlyar VV, Kovalev AA, Soifer VA. Hankel-Bessel laser beams. J Opt Soc Am A 2012; 29(5): 741-747. DOI: 10.1364/JOSAA.29.000741.
  11. Kotlyar VV, Kovalev AA, Soifer VA. Asymmetric Bessel modes. Opt Lett 2014; 39(8): 2395-2398. DOI: 10.1364/OL.39.002395.
  12. Kotlyar VV, Kovalev AA, Skidanov RV, Soifer VA. Asymmetric Bessel-Gauss beams. J Opt Soc Am A 2014; 31(9): 1977-1983. DOI: 10.1364/JOSAA.31.001977.
  13. Hebri D, Rasouli S. Combined half-integer Bessel-like beams: A set of solutions of the wave equation. Phys Rev A 2018; 98: 043826. DOI: 10.1103/PhysRevA.98.043826.
  14. Ismail Y, Khilo N, Belyi V, Forbes A. Shape invariant higher-order Bessel-like beams carrying orbital angular momentum. J Opt 2012; 14(8): 085703. DOI: 10.1088/2040-8978/14/8/085703.
  15. Pei SC, Ding JJ. Eigenfunctions of linear canonical transform. IEEE Trans Signal Process 2002; 50(1): 11-26. DOI: 10.1109/78.972478.
  16. Siegman AE. Lasers. Mill Valey, California: University Science Books; 1986.
  17. Goodman JW. Introduction to Fourier optics. 2nd ed. New York: McGraw-Hill; 1996.
  18. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series. Volume 2: Special functions. New York: Gordon and Breach; 1986.
  19. Wen Y, Chremmos I, Chen Yu, Zhu G, Zhang J, Zhu J, Zhang Ya, Liu J, Yu S. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems. Optica 2020; 7(3): 254-262. DOI: 10.1364/OPTICA.385590.
  20. Cao W, Gao J, Yang X. Determination of effective parameters of fishnet metamaterials with vortex based interferometry. Opt Express 2020; 28(14): 20051-20061. DOI: 10.1364/OE.391873.
  21. Cicek K, Kocyigit A, Topkaya R, Cai X. Integrated vortex beam emitter device for optical manipulation. Appl Opt 2020; 59(10): 3179-3182. DOI: 10.1364/AO.384838.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20