(45-5) 06 * << * >> * Russian * English * Content * All Issues

Optical image edge detection by transmissive metal-dielectric-metal structures
D.V. Nesterenko 1,2, A.A. Morozov 1, L.L. Doskolovich 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia

 PDF, 1568 kB

DOI: 10.18287/2412-6179-CO-853

Pages: 678-684.

Full text of article: Russian language.

The feasibility of an optical image edge detection based on metal-insulator-metal (MIM) resonance transmission structures is experimentally investigated. The structures are fabricated on a glass substrate and consist of thin aluminum layers separated by a quartz layer. The excitation of Fabry-Perot modes by an incident wave produces resonance line shapes in angular and wavelength transmission spectra. Resonance enhancement and suppression of beams using the MIM structures can be implemented for suppressing the illuminating beam and amplifying the field scattered by an object. By using the MIM structure under oblique incidence, we experimentally observe the efficient image edge detection for phase optical elements at a set of wavelengths. The obtained images of edges of the elements exhibit a directionality of image edge detection that depends on the direction of inhomogeneity gradient in the object plane, as suggested by the angular transmission spectra of the MIM structures. The results of the present work can find applications in optical information processing and optical filtering systems.

optical resonances, planar structures, metal-dielectric multilayer, optical image edge detection.

Nesterenko DV, Morozov AA, Doskolovich LL. Optical image edge detection by transmissive metal-dielectric-metal structures. Computer Optics 2021; 45(5): 678-684. DOI: 10.18287/2412-6179-CO-853.

This work was partly funded by the Russian Federation Ministry of Science and Higher Education within the State assignment of the FSRC "Crystallography and Photonics" RAS under agreement 007-ГЗ/Ч3363/26 (the design of experiment) and the Russian Foundation for Basic Research under Projects Nos. 18-29-20006 and 18-07-00613 (experimental studies).


  1. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014; 343: 160-163. DOI: 10.1126/science.1242818.
  2. Solli DR, Jalali B. Analog optical computing. Nat Photonics 2015; 9: 704-706.
  3. Bykov DA, Doskolovich LL, Soifer VA. Temporal differentiation of optical signals using resonant gratings. Opt Lett 2011; 36(17): 3509-3511. DOI: 10.1364/OL.36.003509.
  4. Bykov DA, Doskolovich LL, Soifer VA. Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals. J Opt Soc Am A 2012; 29(8): 1734-1740. DOI: 10.1364/JOSAA.29.001734.
  5. Doskolovich LL, Bykov DA, Bezus EA, Soifer VA. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt Lett 2014; 39(5): 1278-1281. DOI: 10.1364/OL.39.001278.
  6. Bykov DA, Doskolovich LL, Bezus EA, Soifer VA. Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt Express 2014; 22(21): 25084-25092. DOI: 10.1364/OE.22.025084.
  7. Bykov DA, Doskolovich LL, Morozov AA, Podlipnov VV, Bezus EA, Verma P, Soifer VA. First-order optical spatial differentiator based on a guided-mode resonant grating. Opt Express 2018; 26(8): 10997-11006. DOI: 10.1364/OE.26.010997.
  8. Dong Z, Si J, Yu X, Deng X. Optical spatial differentiator based on subwavelength high-contrast gratings. Appl Phys Lett 2018; 112: 181102.
  9. Bykov DA, Doskolovich LL, Golovastikov NV, Soifer VA. Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating. J Opt 2013; 15(10): 105703. DOI: 10.1088/2040-8978/15/10/105703.
  10. Golovastikov NV, Bykov DA, Doskolovich LL. Resonant diffraction gratings for spatial differentiation of optical beams. Quantum Electronics 2014; 44(10): 984-988. DOI: 10.1070/QE2014v044n10ABEH015477.
  11. Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S. Plasmonic computing of spatial differentiation. Nat Commun 2017; 8: 15391. DOI: 10.1038/ncomms15391.
  12. Ruan Z. Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator. Opt. Lett. 2015; 40(4): 601–604.
  13. Golovastikov NV, Doskolovich LL, Bezus EA, Bykov DA, Soifer VA. An optical differentiator based on a three-layer structure with a W-shaped refractive index profile. J Exp Theor Phys 2018; 127(2): 202-209. DOI: 10.1134/S1063776118080174.
  14. Youssefi A, Zangeneh-Nejad F, Abdollahramezani S, Khavasi A. Analog computing by Brewster effect. Opt Lett 2016; 41(15): 3467-3470. DOI: 10.1364/OL.41.003467.
  15. Nesterenko DV, Kolesnikova MD, Lyubarskaya AV. Optical differentiation based on the Brewster effect. Computer Optics 2018; 42(5): 758-763. DOI: 10.18287/2412-6179-2018-42-5-758-763.
  16. Nesterenko DV, Lyubarskaya AV, Kolesnikova MD, Soifer VA. The dependence of the image edge detection directivity by Brewster effect on the gradient of inhomogeneities of objects. J Phys Conf Ser 2019; 1368: 022066. DOI: 10.1088/1742-6596/1368/2/022066.
  17. Kolesnikova MD, Lyubarskaya AV, Nesterenko DV, Soifer VA. The resolution of optical image edge detection based on Brewster effect. J Phys Conf Ser 2019; 1368: 022016. DOI: 10.1088/1742-6596/1368/2/022016.
  18. Nesterenko DV, Kolesnikova MD, Lyubarskaya AV, Soifer VA. Brewster effect in the broadband light reflectivity. J Phys Conf Ser 2020; 1461: 012116. DOI: 10.1088/1742-6596/1461/1/012116.
  19. Pors A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic metasurfaces. Nano Lett 2015; 15(1): 791-797.
  20. Pors A, Bozhevolnyi SI. Plasmonic metasurfaces for efficient phase control in reflection. Opt Express 2013; 21(22): 27438-27451.
  21. Chizari A, Abdollahramezani S, Jamali MV, Salehi JA. Analog optical computing based on a dielectric meta-reflect array. Opt Lett 2016; 41(15): 3451-3454.
  22. Shu S, Li Z, Li YY. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime. Opt Express 2013; 21(21): 25307-25315.
  23. Yan M. Metal–insulator–metal light absorber: a continuous structure. J Opt 2013; 15(2): 025006.
  24. Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, He S. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev 2014; 8(4): 495-520.
  25. Ng C, Wesemann L, Panchenko E, Song J, Davis TJ, Roberts A, Gómez DE. Plasmonic Near‐Complete Optical Absorption and Its Applications. Adv Opt Mater 2019; 7(14): 1801660.
  26. Li Z, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2015; 2(2): 183-188.
  27. Wesemann L, Panchenko E, Singh K, Della Gaspera E, Gómez DE, Davis TJ, Roberts A. Selective near-perfect absorbing mirror as a spatial frequency filter for optical image processing. APL Photonics 2019; 4(10): 100801.
  28. Nesterenko DV. Resonance characteristics of transmissive optical filters based on metal/dielectric/metal structures. Computer Optics 2020; 44(2): 219-228. DOI: 10.18287/2412-6179-CO-681.
  29. Nesterenko D, Hayashi S, Soifer V. Approximation of Fabry-Pérot resonances in Ag/quartz/Ag structures. 2020 International Conference on Information Technology and Nanotechnology (ITNT) 2020: 1-3. DOI: 10.1109/ITNT49337.2020.9253286.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20