(45-6) 04 * << * >> * Russian * English * Content * All Issues

Method for calculating a refractive optical element forming given illuminance distribution and wavefront
L.L. Doskolovich 1,2, D.A. Bykov 1,2, A.A. Mingazov 1, E.A. Bezus 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1193 kB

DOI: 10.18287/2412-6179-CO-912

Pages: 818-827.

Full text of article: Russian language.

In the geometrical optics approximation, we consider a method for calculating a refractive optical element with two freeform surfaces, which transforms an incident beam with a plane wave-front into an output beam with a required wavefront and generating a required illuminance distribution. As examples, optical elements forming given illuminance distributions and (converging and diverging) spherical wavefronts are designed. The presented examples demonstrate the good performance of the method.

free form refractive surface, geometrical optics, inverse problem, illuminance, wavefront.

Doskolovich LL, Bykov DA, Mingazov AA, Bezus EA. Method for calculating a refractive optical element forming given illuminance distribution and wavefront. Computer Optics 2021; 45(6): 818-827. DOI: 10.18287/2412-6179-CO-912.

This work was funded by Russian Foundation for Basic Research (project 18-29-03067; the development of the element calculation method), and by the Russian Federation Ministry of Science and Higher Education: state assignment to the “Crystallography and Photonics” Research Center of the RAS (007-GZ/Ch3363/26; implementation of the software for the simulation of the designed optical elements) and state assignment to the Samara University (laboratory "Photonics for a smart home and smart city" 19v-R001-602; formulation of the problem of maximizing a concave function).


  1. Dickey FM, Holswade SC, eds. Laser beam shaping: Theory and techniques. New York: Marcel Dekker; 2000. ISBN: 978-0-8247-0398-1.
  2. Dickey FM, Holswade SC, Shealy DL, eds. Laser beam shaping applications. Boca Raton: CRC Press; 2006. ISBN: 978-0-8247-5941-4.
  3. Chang S, Wu R, An L, Zheng Z. Design beam shapers with double freeform surfaces to form a desired wavefront with prescribed illumination pattern by solving a Monge–Ampère type equation. J Opt 2016; 18(12): 125602. DOI: 10.1088/2040-8978/18/12/125602.
  4. Feng Z, Froese BD, Huang C-Y, Ma D, Liang R. Creating unconventional geometric beams with large depth of field using double freeform-surface optics. Appl Opt 2015; 54(20): 6277-6281. DOI: 10.1364/AO.54.006277.
  5. Feng Z, Froese BD, Liang R, Cheng D, Wang, Y. Simplified freeform optics design for complicated laser beam shaping. Appl Opt 2017; 56(33): 9308-9314. DOI: 10.1364/AO.56.009308.
  6. Bösel C, Worku NG, Gross H. Ray-mapping approach in double freeform surface design for collimated beam shaping beyond the paraxial approximation. Appl Opt 2017; 56(13): 3679-3688. DOI: 10.1364/AO.56.003679.
  7. Bösel C, Gross H. Double freeform illumination design for prescribed wavefronts and irradiances. J Opt Soc Am A 2018; 35(2): 236-243. DOI: 10.1364/JOSAA.35.000236.
  8. Mao X, Li J, Wang F, Gao R, Li X, Xie Y. Fast design method of smooth freeform lens with an arbitrary aperture for collimated beam shaping. Appl Opt 2019; 58(10): 2512-2521. DOI: 10.1364/AO.58.002512.
  9. Wei S, Zhu Z, Fan Z, Yan Y, Ma D. Double freeform surfaces design for beam shaping with non-planar wavefront using an integrable ray mapping method. Opt Express 2019; 27(19): 26757-26771. DOI: 10.1364/OE.27.026757.
  10. Doskolovich LL, Bykov DA, Andreev ES, Bezus EA, Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Opt Express 2018; 26(19): 24602-24613. DOI: 10.1364/OE.26.024602.
  11. Oliker V, Doskolovich LL, Bykov DA. Beam shaping with a plano-freeform lens pair. Opt Express 2018; 26(15): 19406-19419. DOI: 10.1364/OE.26.019406.
  12. Rubinstein J, Wolansky G. Intensity control with a free-form lens. J Opt Soc Am A 2007; 24(2): 463-469. DOI: 10.1364/JOSAA.24.000463.
  13. Caffarelli L, Kochengin S, Oliker V. On the numerical solution of the problem of reflector design with given far-field scattering data. Contemp Math 1999; 226, 13-32. DOI: 10.1090/conm/226/03233.
  14. Kochengin S, Oliker V. Computational algorithms for constructing reflectors. Comput Visual Sci 2003; 6: 15-21. DOI: 10.1007/s00791-003-0103-2.
  15. Oliker VI. Mathematical aspects of design of beam shaping surfaces in geometrical optics. In Book: Kirkilionis M, Krömker S, Rannacher R, Tomi F, eds. Trends in nonlinear analysis. Berlin, Heidelberg: Springer-Verlag; 2002: 193-224. DOI: 10.1007/978-3-662-05281-5_4.
  16. Fournier FR, Cassarly WJ, Rolland JP. Fast freeform reflector generation using source-target maps. Opt Express 2010; 18(5): 5295-5304. DOI: 10.1364/OE.18.005295.
  17. Michaelis D, Schreiber P, Bräuer A. Cartesian oval representation of freeform optics in illumination systems. Opt Lett 2011; 36(6): 918-920. DOI: 10.1364/OL.36.000918.
  18. Oliker V. Controlling light with freeform multifocal lens designed with supporting quadric method(SQM). Opt Express 2017; 25(4): A58-A72. DOI: 10.1364/OE.25.000A58.
  19. Doskolovich LL, Moiseev MA, Bezus EA, Oliker V. On the use of the supporting quadric method in the problem of the light field eikonal calculation. Opt Express 2015; 23(15): 19605-19617. DOI: 10.1364/OE.23.019605.
  20. Mingazov AA, Bykov DA, Bezus EA, Doskolovich LL. On the use of the supporting quadric method in the problem of designing double freeform surfaces for collimated beam shaping. Opt Express 2020; 28(15): 22642-22657. DOI: 10.1364/OE.398990.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20