(45-6) 06 * << * >> * Russian * English * Content * All Issues

Features of magneto-optics of dichroic cholesteric liquid crystals
A.H. Gevorgyan 1, S.S. Golik 1,2

Far Eastern Federal University, 690922, Vladivostok, Russia, Russky Island, Ajax, 10,
Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences,
690041, Vladivostok, Russia, st. Radio 5

 PDF, 1772 kB

DOI: 10.18287/2412-6179-CO-928

Pages: 839-847.

Full text of article: Russian language.

In this work, magneto-optical properties of a dichroic cholesteric liquid-crystal layer are theoretically investigated at large values of the magneto-optical parameter. Features of all solutions of the dispersion equation are studied in detail. Peculiarities of the reflection, transmission, absorption spectra and the influence of dielectric boundaries on them are investigated. Specific properties of the localization of light and magnetically induced transparency in dichroic cholesteric liquid crystals are considered. The study of the light localization features showed that the presence of an external magnetic field, as well as the presence of dielectric boundaries, led to the appearance of oscillations in the dependence of the intensity of the layer-confined energy on the coordinate of the axis directed along the cholesteric axis. A strong influence of the refractive index of isotropic half-spaces adjacent to a dichroic cholesteric liquid crystal layer on the optics of the layer under consideration is shown. In particular, magnetically induced transparency and diffraction transmission appear only at certain intervals of the refractive index of isotropic half-spaces.

photonics, magneto-optical materials, liquid crystals, Weyl semimetal, diffraction.

Gevorgyan AH, Golik SS. Features of magneto-optics of dichroic cholesteric liquid crystals. Computer Optics 2021; 45(6): 839-847. DOI: 10.18287/2412-6179-CO-928.

This work was supported by the RF Ministry of Science and Higher Education within the State assignment, project FZNS-2020-003 No. 0657-2020-0003.


  1. Zvezdin A, Kotov V. Modern magnetooptics and magne-tooptical materials. Boca Raton: CRC Press; 1997.
  2. Gennes P, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press, 1995.
  3. Blinov L. Electro-optical and magneto-optical properties of liquid crystals. New York: John Wiley and Sons Ltd; 1983.
  4. Hosur P, Qi X. Recent developments in transport phenomena in Weyl semimetals. C R Phys 2013; 14(9): 857-870.
  5. Yan B, Felser C. Topological materials: Weyl semimetals. Annu Rev Condens Matter Phys 2017; 8(1): 337-354. DOI: 10.1146/annurev-conmatphys-031016-025458.
  6. Armitage NP, Mele EJ, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Rev Mod Phys 2018;  90(1): 015001. DOI: 10.1103/RevModPhys.90.015001.
  7. Belopolski I, Manna K, Sanchez DS, Chang G, Ernst B, Yin J, Zhang SS, Cochran T, Shumiya N, Zheng H, Singh B, Bian G, Multer D, Litskevich M, Zhou X, Huang S-M, Wang B, Chang T-R, Xu S-Y, Bansil A, Felser C, Lin H, Hasan MZ. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 2019; 365(6459): 1278-1281. DOI: 10.1126/science.aav2327.
  8. Morali N, Batabyal R, Kumar Nag P, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, Beidenkopf H. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal. Science 2019; 365(6459): 1286-1291. DOI: 10.1126/science.aav2334.
  9. Liu DF, Liang AJ, Liu EK, Xu QN, Li YW, Chen C, 7, Pei D, Shi WJ, Mo SK. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 2019; 365(6459): 1282-1285. DOI: 10.1126/science.aav2873.
  10. Kotov OV, Lozovik YE. Giant tunable nonreciprocity of light in Weyl semimetals. Phys Rev B 2018; 98: 195446. DOI: 1103/PhysRevB.98.195446.
  11. Asadchy VS, Guo C, Zhao B, Fan S. Sub-wavelength passive optical isolators using photonic structures based on Weyl semimetals. Adv Optical Mater 2020; 8(16): 2000100. DOI: 10.1002/adom.202000100.
  12. Liu F, Biadala L, Rodina AV, Yakovlev DR, Dunker D, Javaux C, Hermier J, Efros AL, Dubertret B, Bayer M. Spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanocrystals. Phys Rev B 2013; 88: 035302. DOI: 10.1103/PhysRevB.88.035302.
  13. Gangopadhyay P, Koeckkelberghs G, Persoons A. Magneto-optic properties of regioregular polyalkylthiophenes. Chem Mater 2011; 23(3): 516-521. DOI: 10.1021/cm102215a.
  14. Araoka F, Abe M, Yamamoto T, Takezoe H. Large Faraday rotation in a π-conjugated poly(arylene ethynylene) thin film. Appl Phys Express 2009; 2: 011501. DOI: 10.1143/APEX.2.011501.
  15. Slezák O, Yasuhara R, Lucianetti A, Mocek T. Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant. Opt Mater Express 2016; 6: 3683-3891. DOI: 10.1364/OME.6.003683.
  16. Gevorgyan AH, Golik SS, Gevorgyan TA. About Faraday rotation in bulk media, in a magneto-active layer and in a magneto-photonic crystal layer. J Magn Magn Mat 2019; 474: 173-182. DOI: 10.1016/j.jmmm.2018.10.131
  17. Robbie K, Brett MJ, Lakhtakia A. Chiral sculptured thin films. Nature 1996; 384: 616. DOI: 10.1038/384616a0.
  18. Hodgkinson I, Wu QH, Knight B, Lakhtakia A, Robbie K. Vacuum deposition of chiral sculptured thin films with high optical activity. Appl Opt 2000; 39(4): 642-646. DOI: 10.1364/AO.39.000642.
  19. Gevorgyan AH. Broadband optical diode and giant nonreciprocal tunable light localization. Opt Mater 2021; 113: 110807. DOI: 10.1016/j.optmat.2021.110807.
  20. Gevorgyan AH. Magneto-optics of thin film layer with helical structure and enormous anisotropy. Mol Cryst Liq Cryst 2002; 382(1): 1-19. DOI: 10.1080/713738751.
  21. Gevorgyan AH. Magnetically induced linear and nonreciprocal and tunable transparency. arXiv preprint 2021. Source: <https://arxiv.org/abs/2102.07105>.
  22. Gevorgyan AH, Golik SS, Vanyushkin NA, Efimov IM, Rayelyan MS, Gharagulyan H, Sarukhanyan TM, Hautyunyan MZ, Matinyan GK. Magnetically induced transparency in media with helical dichroic structure. Materials 2021; 14: 2172. DOI: 10.3390/ma14092172.
  23. Gevorgyan AH. Light absorption suppression in cholesteric liquid crystals with magneto-optical activity. J Mol Liq 2021; 335(1): 116289. DOI: 10.1016/j.molliq.2021.116289.
  24. Gevorgyan AH. The influence of the magnetic field on the optical properties of the magnetically active cholesteric liquid crystals [In Russian]. Proc Yrevan State Univ 1987; 2; 66-74.
  25. Vardanyan GA, Gevorgyan AA. Optics of media with helical dichroic structure. Crystallography Reports 1997; 42: 723.
  26. Belyakov VA. Diffraction optics of complex-structured periodic media. New York: Springer-Verlag; 2019.
  27. Gevorgyan AH, Oganesyan KB, Vardanyan GA, Matinyan GK. Photonic density of states of cholesteric liquid crystal cells. Laser Phys 2014; 24: 115801. DOI:10.1088/1054-660X/24/11/115801.
  28. Gevorgyan AH. Mechanisms of anomalous absorption of radiation in media with periodical structure. Mol Cryst Liquid Cryst 2002; 378: 129-146. DOI: 10.1080/713738580.
  29. Kopp VI, Zhang Z-Q, Genack AZ. Lasing in chiral photonic structures. Prog Quantum Electron 2003; 27: 369-416. DOI: 10.1016/S0079-6727(03)00003-X.
  30. Belyakov VA, Semenov SV. Optical edge modes in photonic liquid crystals. JETP 2009; 109(4): 687-699.
  31. Vetrov SYa, Timofeev IV, Shabanov VF. Localized modes in chiral photonic structures. Physics-Uspekhi 2020; 63(1): 33-56. DOI: 10.3367/UFNe.2018.11.038490.
  32. Dolganov PV, Baklanova KD, Dolganov VK. Optical properties and photonic density of states in one-dimensional and three-dimensional liquid-crystalline photonic crystals. Liq Cryst 2020; 47: 231-237. DOI: 10.1080/02678292.2019.1641636
  33. Gevorgyan AH. Anomalies of radiation absorption and superluminal propagation of light: I. An isotropic layer. Opt Spectrosc 2004; 96: 877-886. DOI: 10.1134/1.1771422.
  34. Gevorgyan AH, Oganesyan KB. The photonic density of states and the light energy density in cholesteric liquid crystal cells. Laser Phys Lett 2013; 10: 125802. DOI: 10.1088/1612-2011/10/12/125802
  35. Gevorgyan AА, Oganesyan KB. Effect of anisotropy on defect mode peculiarities in chiral liquid crystals. Laser Phys Lett 2018; 15: 016004. DOI: 10.1088/1612-202X/aa930c.
  36. Rafayelyan MS, Gharagulyan H, Sarukhanyan TM, Gevorgyan AH. Light energy accumulation by cholesteric liquid crystal layer at oblique incidence. Liq Cryst 2019; 46: 1079-1090. DOI: 10.1080/02678292.2018.1556821.
  37. Gevorgyan AА. Specific properties of light localisation in the cholesteric liquid crystal layer. The effects of layer thickness. Liq Cryst 2020; 47(7): 1070-1077. DOI: 10.1080/02678292.2019.1706108.
  38. Gevorgyan AА, Golik SS, Gevorgyan ТА. On peculiarities in localization of light in cholesteric liquid crystals. JETP 2020; 131(2): 329-336. DOI: 10.1134/S1063776120060047.
  39. Dolganov PV., Baklanova KD, Bobrovsky AY. Photonic properties of polymer-stabilized photosensitive cholesteric liquid crystal studied by combination of optical activity, transmission and fluorescence. Liq Cryst 2021. DOI: 10.1080/02678292.2020.1866219. Source: <https://www.tandfonline.com/doi/full/10.1080/02678292.2020.1866219?scroll=top&needAccess=true>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20