(45-6) 07 * << * >> * Russian * English * Content * All Issues

The concept of a miniature all-optical space switch based on the photonic hook effect
Y.E. Geints 1, O.V. Minin 2,3, I.V. Minin 2,3

V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Zuev square, 634021, Tomsk, Russia,
Tomsk State Polytechnic University, Tomsk, 36 Lenin Avenue, 634050, Russia,
Siberian State University of Geosystems and Technologies, Novosibirsk, 63108, Russia

 PDF, 924 kB

DOI: 10.18287/2412-6179-CO-926

Pages: 848-852.

Full text of article: Russian language.

We propose and discuss main properties of a new concept of an all-optical dielectric two-channel wavelength-selective switch based on the photonic hook effect. A prototype of such a de-vice based on dielectric microstructures with broken symmetry of both geometric shape and optical properties without the use of micromechanical devices or nonlinear materials is considered. Due to the unique property of the photonic hook to change its curvature depending on the wavelength of illuminating light, this switch is a promising candidate for the implementation of optical switching in modern optoelectronics and miniature devices "on a chip". Based on numerical FDTD simulations, it is shown that the optical isolation of switched channels for a switch with linear dimensions of about (6 * "lambda")3 based on a Janus particle can reach about 18-20 dB in the wavelength range of 1.5 – 1.9 microns.

optical switch, Janus particle, photonic hook, switch.

Geints YE, Minin OV, Minin IV. The concept of a miniature all-optical space switch based on the photonic hook effect. Computer Optics 2021; 45(6): 848-852. DOI: 10.18287/2412-6179-CO-926.

This work was partially supported by the Russian Foundation for Basic Research (Grant No. 21-57-10001), TPU development program and the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics SB RAS).


  1. El-Bawab TS. Optical switching. Boston, MA: Springer; 2006. DOI: 10.1007/0-387-29159-8.
  2. Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica 2018; 5: 1354-1370. DOI: 10.1364/OPTICA.5.001354.
  3. Stabile R, Albores-Mejia A, Rohit A, et al. Integrated optical switch matrices for packet data networks. Microsyst Nanoeng 2016; 2: 15042. DOI: 10.1038/micronano.2015.42.
  4. Cheng Z, Ríos C, Pernice WHP, Wright CD, Bhaskaran H. On-chip photonic synapse. Sci Adv 2017; 3(9): e1700160. DOI: 10.1126/sciadv.1700160.
  5. Virgilio M, Witzigmann B, Bolognini G, Guha S, Schroeder T, Capellini G. CMOS-compatible optical switching concept based on strain-induced refractive-index tuning. Opt Express 2015; 23(5): 5930-5940. DOI: 10.1364/OE.23.005930.
  6. Ravel K, Koechlin C, Prevost E, Bomer T, Poirier R, Tonck L, Guinde G, Beaumel M, Parsons N, Enrico M, Barker S. Optical switch matrix development for new concepts of photonic based flexible telecom payloads. Proc SPIE 2018; 11180: 111803H. DOI: 10.1117/12.2536044.
  7. Jia H, Yang S, Zhou T, Shao S, Fu X, Zhang L, Yang L. WDM-compatible multimode optical switching system-on-chip. Nanophotonics 2019; 8(5): 889-898; DOI: 10.1515/nanoph-2019-0005.
  8. Williamson IAD, Fan S. Broadband optical switch based on an achromatic photonic gauge potential in dynamically modulated waveguides. Phys Rev Appl 2019; 11(5): 054035. DOI: 10.1103/PhysRevApplied.11.054035.
  9. Ren H, Xu S, Liu Y, Wu S-T. Liquid-based infrared optical switch. Appl Phys Lett 2012; 101(4): 041104. DOI: 10.1063/1.4738995.
  10. Li L, Liu C, Peng H-R, Wang Q-H. Optical switch based on electrowetting liquid lens. J Appl Phys 2012; 111(10): 103103. doi: 10.1063/1.4717715.
  11. Seok TJ, Quack N, Han S, Muller RS, Wu MC. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 2016; 3(1): 64-70. DOI: 10.1364/OPTICA.3.000064.
  12. Bulgan E, Kanamori Y, Hane K. Submicron silicon waveguide optical switch driven by microelectromechanical actuator. Appl Phys Lett 2008; 92(10): 101110. DOI: 10.1063/1.2892677.
  13. Han S, Seok TJ, Yu K, Quack N, Muller RS, Wu MC. Large-scale polarization-insensitive silicon photonic MEMS switches. J Lightw Technol 2018; 36(10): 1824-1830. DOI: 10.1109/JLT.2018.2791502.
  14. Seok TJ, Luo J, Huang Z, Kwon K, Henriksson J, Jacobs J, Ochikubo L, Muller RS, Wu MC. Silicon photonic wavelength cross-connect with integrated MEMS switching. APL Photonics 2019; 4(10): 100803. DOI: 10.1063/1.5120063.
  15. Han S, Seok TJ, Quack N, Yoo B-W, Wu MC. Large-scale silicon photonic switches with movable directional couplers. Optica 2015; 2(4): 370-375. DOI: 10.1364/OPTICA.2.000370.
  16. Strasser TA, Wagener JL. Wavelength-selective switches for ROADM applications. IEEE J Sel Top Quantum Electron 2010; 16(5): 1150-1157. DOI: 10.1109/JSTQE.2010.2049345.
  17. Zhang C, Zhang M, Xie Y, Shi Y, Kumar R, Panepucci RR, Dai D. Wavelength-selective 2  ×  2 optical switch based on a Ge2Sb2Te5-assisted microring. Photon Res 2020; 8(7): 1171-1176. DOI: 10.1364/PRJ.393513.
  18. Christodoulides DN. Foreword. In Book: Minin OV, Minin IV. The photonic hook. Cham: Springer; 2021: vii-viii. DOI: 10.1007/978-3-030-66945-4.
  19. Notomi M, Tanabe T, Shinya A, Kuramochi E, Taniyama H. On-chip all-optical switching and memory by silicon photonic crystal nanocavities. Adv Opt Technol 2008; 2008: 568936. DOI: 10.1155/2008/568936.
  20. Geints YE, Minin IV, Minin OV. Tailoring ‘photonic hook’ from Janus dielectric microbar. J Opt 2020; 22(6): 065606. DOI: 10.1088/2040-8986/ab8e9e.
  21. Minin IV, Minin OV, Geints YuE. Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects. Annalen der Physik 2015; 527(7-8): 491-497. DOI: 10.1002/andp.201500132.
  22. Minin IV, Minin OV, Liu C-Y, Wei H-D, Geints Y, Karabchevsky A. Experimental demonstration of tunable photonic hook by partially illuminated dielectric microcylinder. Opt Lett 2020; 45(17): 4899-4902. DOI: 10.1364/OL.402248.
  23. Liu C-Y, Chung H-J, Minin OV, Minin IV. Shaping photonic hook via well-controlled illumination of finite-size graded-index micro-ellipsoid. J opt 2020; 22(8): 085002. DOI: 10.1088/2040-8986/ab9aaf.
  24. Minin IV, Minin OV, Golodnikov DO. Simple free-space method for measurement of dielectric constant by means of diffractive optics with new capabilities. Proc 8th Int Conf on Actual Problems of Electronic Instrument Engineering  2006: 13-18. DOI: 10.1109/APEIE.2006.4292375.
  25. Kopylov YV, Popov AV, Vinogradov AV. Diffraction phenomena inside thick Fresnel zone plates. Radio Sci1996; 31(6): 1815-1822. DOI: 10.1029/96RS01939.
  26. Kotlyar VV, Stafeev SS, Kovalev AA. Hyperbolic photonic jet. Computer Optics 2012; 36(3): 300-307.
  27. Su H, Hurd Price C-A, Jing L, Tian Q, Liu J, Qian K. Janus particles: design, preparation, and biomedical applications. Materials Today Bio 2019; 4: 100033. DOI: 10.1016/j.mtbio.2019.100033.
  28. Minin OV, Minin IV. The photonic hook.. From optics to acoustics and plasmonics. Cham: Springer; 2021. ISBN: 978-3-030-66944-7.
  29. Minin IV, Minin OV. Diffractive optics and nanophotonics. Resolution below the diffraction limit. Cham: Springer; 2016. ISBN: 978-3-319-24251-4.
  30. Tang L, Kocabas S, Latif S, Okyay AK, Ly-Gagnon D-S, Saraswatand KC, Miller DAB. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photon 2008; 2: 226-229. DOI: 10.1038/nphoton.2008.30.
  31. Li M, Liang H, Luo R, He Y, Ling J, Lin Q. Photon-level tuning of photonic nanocavities. Optica 2019; 6(7): 860-863. DOI: 10.1364/OPTICA.6.000860.
  32. Blasco E, Maruo S, Xu X, Wegener M. 3D printing enabled by light and enabling the manipulation of light: feature issue introduction. Opt Mat Express 2020; 10(12): 3414-3416. DOI: 10.1364/OME.415864.
  33. Berglund GD, Tkaczyk TS. Fabrication of optical components using a consumer-grade lithographic printer. Opt Express 2019; 27(21): 30405-30420. DOI: 10.1364/OE.27.030405.
  34. Dietrich P-I, Blaicher M, Reuter I, Billah M, Hoose T, Hofmann A, Caer C, Dangel R, Offrein B, Troppenz U, Moehrle M, Freude W, Koos C. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat Photonics 2018; 12: 241-247. DOI: 10.1038/s41566-018-0133-4.
  35. Castro-Camus E, Koch M, Hernandez-Serrano AI. Additive manufacture of photonic components for the terahertz band. J Appl Phys 2020; 127(21): 210901. DOI: 10.1063/1.5140270.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20