(45-6) 08 * << * >> * Russian * English * Content * All Issues

All-fiber SWAP-CNOT gate for optical vortices
E.V. Barshak 1, B.P. Lapin 1, D.V. Vikulin 1, S.S. Alieva 1, C.N. Alexeyev 1, M.A. Yavorsky 1

V. I. Vernadsky Crimean Federal University

 PDF, 924 kB

DOI: 10.18287/2412-6179-CO-938

Pages: 853-859.

Full text of article: Russian language.

We study the propagation of optical vortices in a system which consists of a tandem of a multi-helical and twisted anisotropic fiber. We show that at certain resonance regimes of the optical fibers such a system allows one to control sign flipping of the topological charge and the circular polarization of the input optical vortex. Moreover, parameters of the multihelical and the twisted anisotropic fibers are established for the implementation of a logical operation that corresponds to the sequential executing of two fundamental SWAP and CNOT gates over the states of circularly polarized optical vortices.

optical vortices, orbital angular momentum, logic gates, anisotropic optical fibers, birefringence, fiber optics.

Barshak EV, Lapin BP, Vikulin DV, Alieva SS, Alexeyev CN, Yavorsky MA. All-fiber SWAP-CNOT gate for optical vortices. Computer Optics 2021; 45(6): 853-859. DOI: 10.18287/2412-6179-CO-938.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-47-910001).


  1. Shen Y, Wang X, Zhenwei X, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
  2. Friese MEJ, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 1998; 394: 348-350.
  3. Garces-Chavez V, Volke-Sepulveda K, Chavez-Cerda S, Sibbett W, Dholakia K. Transfer of orbital angular momentum to an optically trapped low-index particle. Phys Rev A 2002; 66: 063402.
  4. Spektor B, Normatov A, Shamir J. Singular beam microscopy. Appl Opt 2008; 47: A78-A87.
  5. Foo G, Palacios DM, Shwartzlander GA Jr. Optical vortex coronograph. Opt Lett 2005; 30: 3308-3310.
  6. Swartzlander GA Jr. Peering into darkness with a vortex spatial filter. Opt Lett 2001; 26: 497-499.
  7. Soifer VA, Korotkova O, Khonina SN, Shchepakina EA. Vortex beams in turbulent media: review. Computer Optics 2016; 40: 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  8. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340: 1545.
  9. Qiao W, Lei T, Wu Z, Gao S, Li Z, Yuan X. Approach to multiplexing fiber communication with cylindrical vector beams. Opt Lett 2017; 42: 2579-2582.
  10. Karpeev SV, Podlipnov VV, Ivliev NA, Khonina SN. High-speed format 1000BASESX/LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT. Computer Optics 2020; 44(4): 578-581. DOI: 10.18287/2412-6179-CO-772.
  11. Yao M, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 2011; 3: 161-204.
  12. Willner E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 2015; 7: 66-106.
  13. Padgett MJ. Orbital angular momentum 25 years on. Opt Express 2017; 25(10): 11265-11274. DOI: 10.1364/OE.25.011265.
  14. Essiambre R, Tkach R. Capacity trends and limits of optical communication networks. Proc IEEE 2012; 100: 1035-1055.
  15. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 2012; 6: 488-496.
  16. Wang F-X, Chen W, Yin Z-Q, Wang S, Guo G-C, Han Z-F. Scalable orbital-angular-momentum sorting without destroying photon states. Phys Rev A 2016; 94: 033847.
  17. Dudley A, Milione G, Alfano PR, Forbes A. All-digital wavefront sensing for structured light beams. Opt Express 2014; 22: 14031-14040.
  18. Franke-Arnold S, Barnett S, Yao E, Leach J, Courtial J, Padgett M. Uncertainty principle for angular position and angular momentum. New J Phys 2004; 6: 103.
  19. Yavorsky MA, Vikulin DV, Barshak EV, Lapin BP, Alexeyev CN. Polarization-dependent orbital angular momentum flipping in fibers with acousto-optic interaction. J Phys: Conf Ser 2019; 1368: 022067. DOI: 10.1088/1742-6596/1368/2/022067.
  20. Yavorsky MA, Vikulin DV, Barshak EV, Lapin BP, Alexeyev CN. All-fiber polarization-dependent optical-vortex-controlling via acousto-optic interaction. Days on Diffraction (DD) 2019: 238-243. DOI: 10.1109/DD46733.2019.9016567.
  21. Yavorsky MA, Barshak EV, Vikulin DV, Alexeyev CN. Spin-dependent OAM flipping in multihelical optical fibres. J Opt 2018; 20(11): 115601. DOI: 10.1088/2040-8986/aae3ff.
  22. Alexeyev C, Barshak E, Vikulin DV, Lapin B, Yavorsky M. Toffoli gate in twisted anisotropic and multihelical optical fibers. Days on Diffraction (DD) 2020: 7-12. DOI: 10.1109/DD49902.2020.9274577.
  23. Barshak EV, Alexeyev CN, Lapin BP, Yavorsky MA. Twisted anisotropic fibers for robust orbital-angular-momentum-based information transmission. Phys Rev A 2015; 91: 033833. DOI: 10.1103/PhysRevA.91.033833.
  24. Barshak EV, Vikulin DV, Lapin BP, Alieva SS, Alexeyev CN, Yavorsky MA. Robust higher-order optical vortices for information transmission in twisted anisotropic optical fibers. J Opt 2021; 23(3): 035603. DOI: 10.1088/2040-8986/abda85.
  25. Alexeyev CN, Volyar AV, Yavorsky MA. Transformation of optical vortices in elliptical and anisotropic optical fibres. J Opt A–Pure Appl Opt 2007; 9(4): 387. DOI: 10.1088/1464-4258/9/4/013.
  26. Alexeyev CN, Volyar AV, Yavorsky MA. Multi-helix chiral fibre filters of higher-order optical vortices. J Opt A–Pure Appl Opt 2007; 9(5): 537. DOI: 10.1088/1464-4258/9/5/018.
  27. Alexeyev CN, Lapin BP, Volyar AV, Yavorsky MA. Helical-core fiber analog of a quarter-wave plate for orbital angular momentum. Opt Lett 2013; 38(13): 2277-2279. DOI: 10.1364/OL.38.002277.
  28. Snyder A, Love JD. Optical waveguide theory. London: Chapman and Hall; 1983.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20