(45-6) 09 * << * >> * Russian * English * Content * All Issues

Laser printing of diamond nanoparticles with luminescent SiV center
M.S. Komlenok 1, O.S. Kudryavtsev 1, D.G. Pasternak 1, I.I. Vlasov 1, V.I. Konov 1

Prokhorov General Physics Institute of the Russian Academy of Sciences,
119991, Moscow, Russian Federation, 38 Vavilova str.

 PDF, 924 kB

DOI: 10.18287/2412-6179-CO-918

Pages: 860-864.

Full text of article: Russian language.

A possibility of laser printing of single diamond nanoparticles with luminescent SiV centers is demonstrated. To provide the transfer, a target consisting of a transparent sapphire plate and an absorbing thin titanium film (600 nm thick) coated with nanoparticles was irradiated with a KrF excimer laser ("lambda"=248 nm, "tau"=20 ns). Optimal values of the laser fluence have been determined and a technique for applying labels for the targeted transfer of nanoparticles has been developed. Luminescence mapping of the donor and the receiving substrates confirmed the transfer of diamond nanoparticles with SiV centers.

nanophotonics and optics of nanostructures, laser printing, diamond nanoparticles, NV centers, excimer lasers.

Komlenok MS, Kudryavtsev OS, Pasternak DG, Vlasov II, Konov VI. Laser printing of diamond nanoparticles with luminescent SiV centers. Computer Optics 2021; 45(6): 860-864. DOI: 10.18287/2412-6179-CO-918.

This work was supported by the Russian Science Foundation (Project No. 18-72-10158). The authors thank A.F. Popovich for the deposition of a titanium film and A.K. Martyanov, V.S. Sedov and V.G. Ralchenko for the synthesis of diamond nanoparticles.


  1. Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science1997; 276(5321): 2012-2014.
  2. Jelezko F, Wrachtrup J. Single defect centres in diamond: A review. Physica Status Solidi (A) 2006; 203: 3207-3225.
  3. Vlasov II, Shiryaev AA, Rendler T, Steinert S, Lee S-Y, Antonov D, Vörös M, Jelezko F, Fisenko AV, Semjonova LF, Biskupek J, Kaiser U, Lebedev OI, Sildos I, Hemmer PR, Konov VI, Gali A, Wrachtrup J. Molecular-sized fluorescent nanodiamond. Nature Nanotechnology 2014; 9: 54-58.
  4. Naydenov B, Dolde F, Hall LT, Shin C, Fedder H, Hollenberg LCL, Jelezko F, Wrachtrup J. Dynamical decoupling of a single-electron spin at room temperature. Phys Rev B 2011; 83(8): 081201.
  5. Lukin MD, Hemmer PR. Quantum entanglement via optical control of atom-atom interactions. Phys Rev Lett 2000; 84(13): 2818-2821.
  6. Aharonovich I, Greentree AD, Prawer S. Diamond photonics. Nat Photonics 2011; 5(7): 397-405.
  7. Kennard JE, Hadden JP, Marseglia L, Aharonovich I, Castelletto S, Patton BR, Politi A, Matthews JCF, Sinclair AG, Gibson BC, Prawer S, Rarity JG, O’Brien JL. On-chip manipulation of single photons from a diamond defect. Phys Rev Lett 2013; 111(21): 213603.
  8. Kononenko VV, Vlasov II, Gololobov VM, Kononenko TV, Semenov TA, Khomich AA, Shershulin VA, Krivobok VS, Konov VI. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique. Appl Phys Lett 2017; 111(8): 081101.
  9. Liu Y, Chen G, Song M, Ci X, Wu B, Wu E, Zeng H. Fabrication of nitrogen vacancy color centers by femtosecond pulse laser illumination. Opt Express 2013;  21(10): 12843-12848.
  10. Chen Y-C,  Salter PS, Knauer S, Weng L, Frangeskou AC, Stephen CJ, Ishmael SN, Dolan PR, Johnson S, Green BL, Morley GW, Newton ME, Rarity JG, Booth MJ, Smith JM. Laser writing of coherent colour centres in diamond. Nat Photonics 2016; 11: 77-80.
  11. Ampem-Lassen E, Simpson D, Gibson B, Trpkovski S, Hossain FM, Huntington ST, Ganesan K, Hollenberg LCL, Prawer S. Nano-manipulation of diamond-based single photon sources. Opt Express 2009; 17(14): 11287-11293.
  12. Schell AW, Kewes G, Schroder T, Wolters J, Aichele T, Benson O. A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. Rev Sci Instrum 2011; 82(7): 073709.
  13. Van der Sar T, Heeres EC, Dmochowski GM, de Lange G, Robledo L, Oosterkamp TH, Hanson R. Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center. Appl Phys Lett 2009; 94(17): 173104.
  14. Prawer S, Aharonovich I, eds. Quantum information processing with diamond: principles and applications. Cambridge: Woodhead Publishing; 2014: 168-169.
  15. Xie XN, Chung HJ, Sow CH, Wee ATS. Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mat Sci Eng R 2006; 54(1): 1-48.
  16. Delaporte P, Alloncle A-P. Laser-induced forward transfer: A high resolution additive manufacturing technology. Opt Laser Technol 2016; 78(A): 33-41.
  17. Papazoglou S, Zergioti I. Laser Induced Forward Transfer (LIFT) of nano-micro patterns for sensor applications. Microelectron Eng 2017; 182: 25-34.
  18. Smits ECP, Walter A, Leeuw DM, Asadi K. Laser induced forward transfer of graphene. Appl Phys Lett 2017; 111(17): 173101.
  19. Arutyunyan NR, Komlenok MS, Kononenko TV, Dezhkina MA, Popovich AF, Konov VI. Printing of single-wall carbon nanotubes via blister-based laser-induced forward transfer. Laser Phys 2019; 29(2): 026001.
  20. Dezhkina MA, Komlenok MS, Pivovarov PA, Rybin MG, Arutyunyan NR, Popovich AF, Obraztsova ED, Konov VI. Blister-based laser-induced forward transfer of 1D and 2D carbon nanomaterials. J Phys Conf Ser 2020; 1571: 012007.
  21. Komlenok MS, Pivovarov PA, Dezhkina MA, Rybin MG, Savin SS, Obraztsova ED, Konov VI. Printing of crumpled CVD graphene via blister-based laser-induced forward transfer. Nanomaterials 2020; 10: 1103.
  22. Komlenok MS, Kudryavtsev OS, Pasternak DG, Vlasov II, Konov VI. Blister-based laser-induced forward transfer of luminescent diamond nanoparticles. Physica Status Solidi A 2021; 218: 2000269.
  23. Neu E, Steinmetz D, Riedrich-Möller J, Gsell S, Fischer M, Schreck M, Becher C. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys 2011; 13(2): 025012.
  24. Pasternak DG, Dai J, Kalashnikov DA, Sedov VS, Martyanov AK, Ralchenko VG, Krivitsky LA. Low-temperature silicon-vacancy luminescence of individual chemical vapor deposition nanodiamonds grown by seeding and spontaneous nucleation. Physica Status Solidi A 2020; 218: 2000274.
  25. Romshin AM, ZeebVE, Martyanov AK, Kudryavtsev OS, Pasternak DG, Sedov VS, Ralchenko VG, Sinogeikin AG, Vlasov II. A new approach to precise mapping of local temperature fields in submicrometer aqueous volumes. Scientific Reports 2021; 13(1): 14228.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20