(46-4) 15 * << * >> * Русский * English * Содержание * Все выпуски

Spatiotemporal ecosystem health assessment comparison under the pressure-state-response framework
M.S. Boori 1, K. Choudhary 1,2, R. Paringer 1,3, A. Kupriyanov 1,3

Scientific Research Laboratory of Automated System of Scientific Research (SRL-35),
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34;
Department of Land Surveying and Geo-informatics, Smart Cities Research Institute
The Hong Kong Polytechnic University, Kowloon, Hong Kong, China;
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia Molodogvardeyskaya 151

 PDF, 4276 kB

DOI: 10.18287/2412-6179-CO-1067

Страницы: 634-642.

Язык статьи: English.

A spatiotemporal ecosystem health (EH) assessment study is necessary for sustainable development and proper management of natural resources. At present higher rate of human-socio-economic activities, industrialization, and misuse of land are major factors for ecosystem degradation. Therefore this research work used remote sensing (RS) and geographical information system (GIS) technology, under pressure-state-response (PSR) framework with analytic hierarchy process (AHP) weight method based on 29 indicators were analyzed for spatiotemporal EH assessment in Tatarstan and Samara states in Russia from 2010 to 2020. Results indicate continuous degradation of EH in Tatarstan state while in Samara state first decreased and later on an improved ecosystem health condition. This is one of the most innovative analyses work for real-time accurate ecosystem health assessment, mapping, and monitoring as well as protect fragile eco-environment with sustainable development, proper policy-making, and management at any scale and region.

Ключевые слова:
spatiotemporal ecosystem health, PSR, remote sensing & GIS, AHP, indicators.

The research was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant # 0777-2020-0017) and partially funded by RFBR, project number # 19-29-01135.

Boori MS, Choudhary K, Paringer R, Kupriyanov A. Spatiotemporal ecosystem health assessment comparison under the pressure-state-response framework. Computer Optics 2022; 46(4): 634-642. DOI: 10.18287/2412-6179-CO-1067.


  1. Jenkins R. Assessing and managing climate change related risks to the Tana River Basin, Kenya. Doctoral thesis, University of East Anglia; 2018.
  2. Boori MS, Choudhary K, Paringer R, Kupriyanov A. Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sens Appl: Soc Environ 2021; 23: 100530. DOI: 10.1016/j.rsase.2021.100530.
  3. Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM, Midani FS, Washburne AD. The microbiome stress project: Toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front Microbiol 2019; 9: 3272. DOI: 10.3389/fmicb.2018.03272.
  4. Melgar-Melgar RE, Hall CAS. Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems. Ecol Econ 2020; 169: 106567.
  5. Boori MS, Choudhary K, Kupriyanov A. Detecting vegetation drought dynamic in European Russia. Geocarto Int 2020. DOI: 10.1080/10106049.2020.1750063.
  6. Torretta V, Katsoyiannis IA, Viotti P, Rada EC. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability 2018; 10: 950.
  7. Hillebrand H, Donohue I, Harpole WS, Dorothee H, Kucera M, Lewandowska AM, Merder J, Montoya JM, Freund JA. Thresholds for ecological responses to global change do not emerge from empirical data. Nat Ecol Evol 2020; 4: 1502-1509. DOI: 10.1038/s41559-020-1256-9.
  8. Wang X, Dong X, Liu H, Wei H, Fan W, Lu N, Xu Z, Ren J, Xing K. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosystem Services 2017; 27(A): 113-123.
  9. Hu X, Xu H. A new remote sensing index based on the pressure-state-response framework to assess regional ecological change. Environ Sci Pollut Res 2019; 26: 5381-5393. DOI: 10.1007/s11356-018-3948-0.
  10. Boori MS, Paringer R, Choudhary K, Kupriyanov A. Comparison of hyperspectral and multi-spectral imagery to building a spectral library and land cover classification performance. Computer Optics 2018; 42(6): 1035-1045. DOI: 10.18287/2412-6179-2018-42-6-1035-1045.
  11. Kellogg S. Urban ecosystem justice: The field guide to a socio-ecological systems science of cities for the people (Order No. 10790493). Available from Agricultural & Environmental Science Collection; ProQuest Dissertations & Theses Global; Publicly Available Content Database. (2085321632) 2018. Source:           <https://search.proquest.com/docview/2085321632?accountid=28551>.
  12. Yuan M-H, Lo S-L. Ecosystem services and sustainable development: Perspectives f1 rom the food-energy-water Nexus. Ecosystem Services 2020; 46: 101217.
  13. Wu J, Wang X, Zhong B, Yang A, Jue K, Wu J, Zhang L, Xu W, Wu S, Zhang N, Liu Q. Ecological environment assessment for Greater Mekong Subregion based on Pressure-State-Response framework by remote sensing. Ecol Indic 2020; 117: 106521.
  14. Boori MS, Choudhary K, Kupriyanov A. Crop growth monitoring through Sentinel and Landsat data based NDVI time-series. Computer Optics 2020; 44(3): 409-419. DOI: 10.18287/2412-6179-CO-635.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20