Propagation of the radially-limited vortical beam in a near zone. Part II. Results of simulation
S.N. Khonina
, A.V. Ustinov, A.A. Kovalev, S.G.Volotovsky

Image Processing Systems Institute of the RAS,

S. P. Korolyov Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Detailed analysis of diffraction of a vortical beam by a circular microaperture in a near zone with use of various algorithms of calculation is carried out: vectorial Rayleigh–Sommerfeld diffraction integral (RS), plane wave expansion (PWE), including Mansuripur’s modification, and finite-difference time domain (FDTD) method realised in the R-Soft software product.
Results of nonparaxial modelling for diffraction of a vortical beam by a circular microaperture show oscillating character of shadow area of a vortical beam: the size of a light vortex increases and decreases as the beam propagates, and it can be much less by size in comparison with predicted by paraxial theory. Such character is confirmed in a vector case also.
In the work the algorithm of fast calculation of PWE has been modified on the basis of the approach offered by Mansuripur. At such modification the polarisation matrix has no singularity, but predicts appearance y-components at propagation even if initially the wave was completely x-po­larised. The analysis of the expressions received for vortical beams shows, that axial values of total intensity will not be zero for vortical order |m|=<2.

Key words:
diffraction by a circular aperture, vortical beam, plane wave expansion with Mansuripur’s modification.

References:

  1. Mansuripur, M. Certain computational  aspects of vector diffraction problems // J. Opt. Soc. Am. A. – 1989. – Vol. 6, No. 5. – P. 786-805.
  2. Lin, Y. Vector fuzzy control iterative algorithm for the design of sub-wavelength diffractive optical elements for beam shaping, / Yong Lin, Jiasheng Hu, Kenan Wu // Optics Communications. – 2009. – Vol.  282. – P. 3210-3215.
  3. Soskin, M.S., Vasnetsov, M.V. Singular optics // Prog. Opt. – 2001. – Vol. 42. – P. 219–276.
  4. Desyatnikov, A.S. Optical Vortices and Vortex Solitons / Anton S. Desyatnikov, Lluis Torner, and Yuri S. Kivshar // E. WOLF, PROGRESS IN OPTICS. – 2005. – Vol. X, – P. 47.
  5. Soifer, V.A. Optical Microparticle Manipulation: Advances and New Possibilities / V.A. Soifer, V.V. Kotlyar, S.N. Khonina // Created by Diffractive Optics, Physics of Particles and Nuclei. – 2004. – Vol. 35, No. 6. – P. 733-766. – (in Russian).
  6. Dienerowitz, M. Optical vortex trap for resonant confinement of metal nanoparticles / Maria Dienerowitz, Michael Mazilu, Peter J. Reece, Thomas F. Krauss and Kishan Dholakia // Opt. Express. – 2008. – Vol. 16(7). – P. 4991-4999.
  7. Tychinskii, V.P. Super-resolution and singularities in phase images // Uspekhi Fizicheskikh Nauk. – 2008. –V. 178(11). – P. 1205-1214. – (in Russian).
  8. Wang, W. Phase singularities in analytic signal of white-light speckle pattern with application to micro-displacement measurement / W. Wang, N. Ishii, S.G. Hanson, Y. Miya­moto and M. Takeda // Opt. Commun. – 2005. – Vol. 248. – P. 59-68.
  9. Wang, W. Optical vortex metrology for nanometric speckle displacement measurement, / Wei Wang, Tomoaki Yokozeki, Reika Ishijima, Atsushi Wada, Yoko Miyamoto and Mitsuo Takeda // Opt. Express. – 2006. – Vol. 14(1). – P. 120-127.
  10. Singh, R.K. Structure of a tightly focused vortex beam in the presence of primary coma / Rakesh Kumar Singh, P. Senthilkumaran, Kehar Singh // Optics Communications. – 2009. – Vol. 282. – P. 1501–1510.
  11. Kotlyar, V.V. Diffraction of conic and Gaussian beams by a spiral phase plate / V.V. Kotlyar, A.A. Kovalev, S.N. Kho­nina, R.V. Skidanov, V.A. Soifer, H. Elfstrom, N. Tossavai­nen, and J. Turunen // Computer Optics. – 2005. – Vol. 28. – P. 29-36. – (in Russian).
  12. Kotlyar, V.V. Diffraction of conic and Gaussian beams by a spiral phase plate / V.V. Kotlyar, A.A. Kovalev, S.N. Kho­nina, R.V. Skidanov, V.A. Soifer, H. Elfstrom, N. Tossa­vainen, J. Turunen // Appl. Opt. – 2006. – V. 45, No. 12, – P. 2656-2665.
  13. Kotlyar, V.V. Diffraction of the Gaussian beam by a spiral axicon / V.V. Kotlyar, A.A. Kovalev, D. Cojoc, V. Gar­bini, E. Ferrari // Computer Optics. – 2006. – Vol. 30. – P. 30-35.– (in Russian).
  14. Kotlyar, V.V. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate / V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, O.Yu. Moiseev, V.A. Soifer // J. Opt. Soc. Am. A. – 2007. – Vol. 24, No. 7. – P. 1955-1964.
  15. Mei, Z. Nonparaxial analysis of vectorial Laguerre-Bessel-Gaussian beams / Z. Mei and D. Zhao // Opt. Express. – 2007. – Vol. 15. – P. 11942–11951.
  16. Kovalev, A.A. Nonparaxial propagation of vectorial Gaussian optical vortex with initial radial polarization / A.A. Kovalev and V.V. Kotlyar // Computer Optics. – 2009. – Vol. 33, N 3. – P. 226-232.. – (in Russian).
  17. Kotlyar, V. Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization / V. Kotlyar and A. Kovalev // J. Opt. Soc. Am. A. – 2010. –Vol. 27(3). – P. 372-380.
  18. Kovalev, A.A. Nonparaxial vectorial diffraction of the Gaussian beam by a spiral phase plate / A.A. Kovalev, V.V. Kotlyar // Computer Optics. – 2007. – Vol. 31, N 4, – P. 19-22. – (in Russian).
  19. Kotlyar, V.V. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate / Victor V. Kotlyar, Anton A. Almazov, Svetlana N. Khonina, and Victor A. Soifer, Henna Elfstrom and Jari Turunen // J. Opt. Soc. Am. A. – 2005. – Vol. 22, No. 5. – P. 849-861.
  20. Prudnikov, A.P. Integrals and series. Special functions, A.P. Prudnikov, Yu.A. Brychkov, O.I. Marychev –Moscow, “Nauka” Puiblishers, 1983. – (in Russian).

© 2009,
, 443001, , . , 151; : ko@smr.ru ; : +7 (846 2) 332-56-22, : +7 (846 2) 332-56-20