Image recognition using a radial neighborhood method
I.A. Mikhaylov

P. G. Demidov Yaroslavl State University

Full text of article: Russian language.

Abstract:
Numeral character recognition is considered in this paper. Three recognition methods are proposed. The radial neighborhood method is basic, whereas the slice method and the method, based on a modified Hausdorff distance, are additional. A series of experiments is performed to compare these methods with the CL-approach and the correlation algorithm. Artificial and real noised images are used as the test samples. Resolution of these images is low. Experimental results reveal an effectiveness of the proposed methods, most notably the radial neighborhood method.

Key words:
optical character recognition, noised images, radial neighborhood method.

References:

  1. Mori, S. Historical Review of OCR Research and Development / S. Mori, C.Y. Suen, K. Yamamoto // Proceedings of the IEEE. – 1992. – Vol. 80, N. 7. – P. 1029-1058.
  2. Volotovskiy, S.G. A machine vision system for tank-wagon number recognition using a modified correlator in the Hausdorff distance / S.G. Volotovskiy, N.L. Kazanskiy, S.B. Popov, R.V. Khmelev // Computer Optics. –2005. – N. 27. – P. 177-184. – (In Russian).
  3. Karlin, A.K. Tank-wagon number recognition using a correlation algorithm / A.K. Karlin, A.N. Malkov, E.A. Ti­mofeev, G.P. Shtern // Mathematics, cybernetics, informatics. Proceedings of the International Science Conference devoted to Prof. A.Yu. Levin (Yaroslavl, June 25-26, 2008) / Edited by S.A. Kaschenko, V.A. Sokolov; Yaroslavl State University. – Yaroslavl: YSU, 2008. – P. 103-110. – (In Russian).
  4. Duda, R.O. Pattern classification and scene analysis / R.O. Duda, P.E. Hart. – Wiley-Interscience, John Wiley & Sons. N.Y.; London; Sydney; Toronto, 1973.
  5. Chinese character recognition: history, status and prospects / R. Dai, C. Liu, B. Xiao // Frontiers of Computer Science in China. – 2007. – Vol. 1, N. 2. – P. 126-136.
  6. Malon, C. Support Vector Machines for Mathematical Symbol Recognition / C. Malon, S. Uchida, M. Suzuki // Structural, Syntactic, and Statistical Pattern Recognition, 2006. – Vol. 4109/2006. – P. 136-144.
  7. Offline Chinese handwriting recognition: assessment of current technology / S.N. Srihari, X. Yang, G.R. Ball // Frontiers of Computer Science in China. – 2007. – Vol. 1, N. 2. – P. 137-155.
  8. AbdulKader, A. A Two-Tier Arabic Offline Handwriting Recognition Based on Conditional Joining Rules / A. AbdulKader // Arabic and Chinese Handwriting Recognition, 2008. – Vol. 4768/2008. – P. 70-81.
  9. Abou-zeid, H.M.R. Computer Recognition of Unconstrained Handwritten Numerals / H.M.R. Abou-zeid, A.S. El-ghazal, A.A. Al-khatib // Circuits and Systems. Proceedings of the 46th IEEE International Midwest Symposium on, 2004. – P. 969-973.
  10. Kacalak, W. Selected Problems of Intelligent Handwriting Recognition / W. Kacalak, K.D. Stuart, M. Majewski // Analysis and Design of Intelligent Systems using Soft Computing Techniques. – 2007. – Vol. 41/2007. – P. 298-305.
  11. Song, L. Method for Automatic Image Recognition based on Algorithm Fusion / L. Song, Y. Lin // Proceedings of the Third IEEE International Conference on Natural Computation. – 2007. – P. 671-675.
  12. Ahmed, M.J. License plate recognition system / M.J. Ah­med, M. Sarfraz, A. Zidouri, W.G. Al-Khatib // Proc. IEEE Int. Electronics, Circuits and Systems Conf. – 2003. – Vol. 2. – P. 898-901.
  13. Comelli, P. Optical Recognition of Motor Vehicle License Plates / P. Comelli, P. Ferragina, M.N. Granieri, F. Stabile // IEEE Transactions on Vehicular Technology. – 1995. – Vol. 44, N 4. – P. 790-799.
  14. Huang, R. License Plate Character Recognition Using Artificial Immune Technique / R. Huang, H. Tawfik, A. Nagar // Computational Science, 2008. – Vol. 5101/2008. – P. 823-832.
  15. Rapid Door Number Recognition by a Humanoid Mobile Robot / Q. Meng // Journal of Intelligent and Robotic Systems. – 2005. – Vol. 43, N 1. – P. 33-54.
  16. Einsele, F. Recognition of Ultra Low Resolution Word Images Using HMMs / F. Einsele, R. Ingold, J. Hennebert // Computer Recognition Systems 2. – 2007. – Vol. 45/2007. – P. 429-436.
  17. Assabie, Y. Structural and Syntactic Techniques for Recognition of Ethiopic Characters / Y. Assabie, J. Bigun // Structural, Syntactic, and Statistical Pattern Recognition. -2006. – Vol. 4109/2006. – P. 118-126.
  18. Kara, L.B. Sketch Understanding for Engineering Software: Ph.D. Thesis Proposal / L.B. Kara. – Pittsburgh, 2003. – 68 p.
  19. Sternby, J. Frame Deformation Energy Matching of On-Line Handwritten Characters / J. Sternby // Progress in Pattern Recognition, Image Analysis and Applications. –2005. – Vol. 3773/2005. – P. 128-137.
  20. Suen, C.Y. Computer Recognition of Unconstrained Handwritten Numerals / C.Y. Suen, C. Nadal, R. Legault, T.A. Mai, L. Lam // Proceedings of the IEEE. – 1992. – Vol. 80, N 7. – P. 1162-1180.
  21. Hu, J. Structural Boundary Feature Extraction for Printed Character Recognition / J. Hu, D. Yu, H. Yan // Joint IAPR International Workshops SSPR»98 and SPR»98 Sydney, Australia, Proceedings. – 1998. – P. 500-507.
  22. Khmelev, R.V. Combined application of structural analysis and the Hausdorff distance for comparison of object and template / R.V. Khmelev // Computer Optics. – 2005. – N 27. – P. 174-176.   (In Russian).
  23. Dual Classifier System for Handprinted Alphanumeric Cha­racter Recognition / Y.-C. Chim, A.A. Kassim, Y. Ibrahim // Pattern Analysis & Applications. – 1998. – Vol. 1, N. 3. – P. 155-162.
  24. Pal, U. Handwritten Character Recognition of Popular South Indian Scripts / U. Pal, N. Sharma, T. Wakabayashi, F. Kimura // Arabic and Chinese Handwriting Recognition. – 2008. – Vol. 4768/2008. – P. 251-264.
  25. Yagi, M. A Human-Perception-Like Image Recognition System Based on PAP Vector Representation With Multi Resolution Concept / M. Yagi, T. Shibata // Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. – 2002. – Vol. 1. – P. 1045-1048.
  26. Yu, K. Skeleton-Based Recognition of Chinese Calligraphic Character Image / K. Yu, J. Wu, Y. Zhuang // Advances in Multimedia Information Processing. – 2008. – Vol. 5353/2008. – P. 228-237.
  27. Wachenfeld, S. A Multiple Classifier Approach for the Recognition of Screen-Rendered Text / S. Wachenfeld, S. Fleischer, X. Jiang // Computer Analysis of Images and Patterns. – 2007. – Vol. 4673/2007. – P. 921-928.
  28. Mikhaylov, I.A. A certain image recognition method / I.A. Mikhaylov // Modeling and analysis of information systems. – 2007. – Vol. 14, N 4. – P. 7-12. – (In Russian).
  29. Mikhaylov I.A. Some image recognition methods / I.A. Mikhaylov // Modeling and analysis of information systems. – 2008. – Vol. 15, N 4. – P. 56-64. – (in Russian).
  30. Glucksman, H. Classification of mixed-font alphabetics by characteristic loci / H. Glucksman // Digest of 1st Annual IEEE Comp. Conf., 1967. – P. 138-141.

© 2009,
, 443001, , . , 151; : ko@smr.ru ; : +7 (846 2) 332-56-22, : +7 (846 2) 332-56-20