Efficient sets of mutually-calculated features for linear local description of digital signals
V. V. Myasnikov

Image Processing Systems Institute, Russian Academy of Sciences

Full text of article: Russian language.

Abstract:
The paper addresses the problem of constructing efficient computationally and qualitatively linear local features (LLA) of digital signals and images. Under a set of jointly-computed LLP is a pair consisting of a set of finite impulse response (FIR) and an algorithm that produces simultaneous / joint computation of several linear convolution the input signal / image with a set of FIR. Effective set of jointly-computed LLP should detect the optimal behavior: an algorithm for calculating the signs must have a predetermined computational complexity, and a set of FIR must be well coordinated with the quality criteria specific application. Propose a method for constructing efficient sets of co-LLA calculated based on the design of a set of sequences of samples of a special type of FIR. Examples of such sets of sequences, is considered an example of solving the problem of building an effective recruitment LLP for a typical problem of digital processing signals.

Key words:
digital signals, linear local features.

References:

  1. Computer Image Processing, Part II: Methods and algorithms / edited by Victor A. Soifer. – VDM Verlag, 2009. - 584 p.
  2. Forsyth, D.A. Computer Vision: A Modern Approach / D.A. Forsyth, J. Ponce // Upper Saddle River, NJ: Prentice Hall. - 2003. – 693 p.
  3. Fukunaga, K. Introduction to Statistical Pattern Recognition / K. Fukunaga. -  2nd ed., New York: Academic Press, Inc. - 1991.- 591 p.
  4. Myasnikov, V.V.On the synthesis of the efficient algorithm over the set of the convolution algorithms/ V.V. Myasnikov // Computer optics, Issue 29, 2006, P. 78-117. – (in Russian)
  5. Myasnikov, V.V. Efficient linear local features of signals and images / V.V. Myasnikov // Computer optics. – 2007. – Vol.31,  4. - P. 58-76. – (in Russian)
  6. Myasnikov, V.V. Construction of efficient linear local features for image processing and analysis / V.V. Myasnikov // Automation and Remote Control. – 2010. – 3. – P.162-177. – (in Russian)
  7. Hatamian, M. A real-time two-dimensional moment generating algorithm and its single chip implementation / M. Hatamian // IEEE Trans. Acoustic, Speech, and Signal Proc. 1999. V.ASSP-34. ~3. P. 546--553.
  8. Glumov, N.I. Application of polynomial bases for image processing in sliding window / N.I. Glumov, V.V. Myasnikov, V.V. Sergeyev // Computer optics. - 1995. -  14-15. Part.1. - P.55--68. – (in Russian)
  9. Agarwal, R.P. Difference Equations and Inequality: Theory, Methods, and Applications / R.P. Agarwal. - New York: Marcel Dekker, 2000. - 998 p.
  10. Lidl, R. Finite Fields, Second edition / R. Lidl, H. Niederreiter // Cambridge University Press, 1997, 755 pp.
  11. Gelfond, A.O. Finite Differences Calculus / A.O. Gelfond. - 3-d issue. corrected. - Moscow: «Science» Publisher, 1967. – P. 375. – (in Russian)
  12. Myasnikov, V.V. Analysis of the methods for construction of linear local features / V.V. Myasnikov, A.U. Bavrina, O.A. Titova // Computer optics. – 2010. – Vol. 34, 3. - P. 193-201. – (in Russian)
  13. Malcev, A.I. Linear algebra basis / A.I. Malcev. - Moskow: «Science» Publisher, 1975. - 400 p. – (in Russian)
  14. Bellman, R. Dynamic Programming / R. Bellman. - Dover Publications, Inc. – 2003. - 366 p.
  15. Anderson, J.A. Discrete Mathematics with Combinatorics / J.A. Anderson, - Upper Saddle River, New Jersey: Prentice Hall, 2001.
  16. Myasnikov, V.V. Construction of Integer-Value Polynomials for Recursive Calculation of the Convolution with FIR-Filter / V.V. Myasnikov // Theses of 7-th International Conference ”International Conference on Pattern Recognition and Image Analysis” - PRIA’2004, St.-Petersburg, Russia, October 18-23, 2004 ., P. 331-334.
  17. Gihman, I. I. Introduction to stochastic process theory / I.I. Gihman, A.V. Skorohodov // Moscow: “Science” Publisher, 1965. – (in Russian)
  18. Nussbaumer, H.J. Fast Fourier Transform and Convolution Algorithms / H.J. Nussbaumer. - 2nd ed. New York: Springer-Verlag, 1982.
  19. Minoux, M. Mathematical programming: theory and algorithms / M. Minoux. - New York: Wiley in Chichester, 1986. – 489 p.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20