Modeling a high numerical aperture micrometalens with a varying number of sectors
Nalimov A.G.


Image Processing Systems Institute of RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.


Using the numerical solution of differential Maxwell’s equations, we show that a binary microlens with unit numerical aperture (NA = 1) manufactured in a thin-film amorphous silicon focuses the laser light into a near-surface subwavelength optical focal spot. The microlens contains sectored subwavelength diffraction gratings operating as half-wave plates. The incident light is a linearly polarized plane wave. The micrometalens is numerically shown to operate with near-same efficiency with the number of sectored grating varying from 3 to 16. It is shown that a 16-sector micrometalens generates a focal spot of size at the full-width at half-maximum intensity of FWHMx = 0.435λ and FWHMy = 0.457λ along the Cartesian axes, where λ is the incident wavelength. A 4-sector microlens is numerically shown to focus light into a focal spot of size FWHMx = 0.428λ and FWHMy = 0.46λ.

metalens, phase zone plate, sharp focus, FDTD method, scanning near-field optical microscope.

Nalimov AG. Modeling a high numerical aperture micrometalens with a varying number of sectors. Computer Optics 2017; 41(5): 655-660. DOI: 10.18287/2412-6179-2017-41-5-655-660.


  1. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13(2): 139-150. DOI: 10.1038/nmat3839.
  2. Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014; 14(3): 1394-1399. DOI: 10.1021/nl4044482.
  3. Sun S, Yang K, Wang C, Juan T, Chen WT, Liao CY, He Q, Xiao Sh, Kung W-T, Guo G-Y, Zhou L, Tsai DP. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012; 12(12): 6223-6229. DOI: 10.1021/nl3032668.
  4. Lan L, Jiang W, Ma Y. Three dimensional subwavelength focus by a near-field plate lens. Appl Phys Lett 2013; 102(23): 231119. DOI: 10.1063/1.4810004.
  5. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan Sh. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 2009; 9(1): 235-238. DOI: 10.1021/nl802830y.
  6. Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12(9): 4932-4936. DOI: 10.1021/nl302516v.
  7. Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 2015; 6: 7069. DOI: 10.1038/ncomms8069.
  8. Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 2015; 10(11): 937-943. DOI: 10.1038/nnano.2015.186.
  9. Kotlyar VV, Stafeev SS, Kotlyar MV, Nalimov AG, O'Faolain L. Subwavelength micropolarizer in a gold film for visible light. Appl Opt 2016; 55(19): 5025-5032. DOI: 10.1364/AO.55.005025.
  10. Stafeev SS, Nalimov AG, Kotlyar MV, Gibson D, Song S, O’Faolain L, Kotlyar VV. Microlens-aided focusing of linearly and azimuthally polarized laser light. Opt Express 2016; 24(26): 29800-29813. DOI: 10.1364/OE.24.029800.
  11. Kotlyar VV, Nalimov AG, Stafeev SS, Hu C, O'Faolain L, Kotlyar MV, Gibson D, Song S. Thin high numerical aperture metalens. Opt Express 2017; 25(7): 8158-8167. DOI: 10.1364/OE.25.008158.
  12. Hao X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally polarized beam. Opt Lett 2010; 35(23): 3928-3930. DOI: 10.1364/OL.35.003928.
  13. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beams. Phys Rev Lett 2003; 91: 233901. DOI: 10.1103/PhysRevLett.91.233901.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20