Measurement of the optical thickness of a layered object from interference colors in white-light microscopy
Dyachenko A.A., Ryabukho V.P.


Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia,

Saratov State University, Saratov, Russia

Full text of article: Russian language.


Regular features in generating coloured interference patterns from single-layer thin objects in polychromatic optical microscopy are considered. Expressions for the intensity distribution of the image interference fields are obtained with due account for the spectral properties of radiation. The proposed algorithm for computer-aided calculation and generation of coloured interference patterns in white light depending on the optical thickness of the layered object is based on a RGB colour model. Numerically simulated interference patterns are presented and changes in their colour and structure under varying parameters of the microscope optical scheme and object optical properties are discussed. We show that it is possible to determine the optical thickness of the object layer through the numerical comparison of interference colours obtained in the natural and numerical experiments.

interference microscopy, interference images, coherence, interference color, digital image processing, thin films.

Dyachenko AA, Ryabukho VP. Measurement of the optical thickness of a layered object from interference colors in white-light microscopy. Computer Optics 2017; 41(5): 670-679. DOI: 10.18287/2412-6179-2017-41-5-670-679.


  1. Rosenberg GV. Interference microscopy [In Russian]. Physics-Uspekhi 1953; 50: 271-302. DOI: 10.3367/UFNr.0050.195306d.0271.
  2. Maréchal A, Francon M. Diffraction structure des images: Influence de la coherence de la lumiere par. Paris: Revue d'optique the?orique et instrumentale, 1960.
  3. Hariharan P. Optical interferometry. 2nd ed. Amsterdam, Boston: Academic Press; 2003. ISBN: 978-0-12-311630-7.
  4. Vishnyakov GN, Levin GG, Minaev VL, Tsel’mina IYu. Interference microscopy of subnanometer depth resolution: Experimental study. Optics and Spectroscopy 2014; 116(1): 156-160. DOI: 10.1134/S0030400X14010226.
  5. Ignat’ev PS, Kol’ner LS, Indukaev KV, Teleshevskii VI. Laser modulation interference microscopy as a means of controlling the form and roughness of optical surfaces. Measurement Techniques 2015; 58(7): 772-776. DOI: 10.1007/s11018-015-0792-1.
  6. De Groot P. Princeples of interference microscopy for the measurement of surface topography. Advanced in Optics and Photonics 2015; 7(1): 1-65. DOI: 10.1364/AOP.7.000001.
  7. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 978-0521642224.
  8. Kalenkov GS, Kalenkov SG, Shtan’ko AE. Hyperspectral holographic Fourier-microscopy. Quantum Electronics 2015; 45(4): 333-338. DOI: 10.1070/QE2015v045n04ABEH015584.
  9. Lychagov VV, Ryabukho VP, Kalyanov AL, Smirnov IV. Low-coherence interferometry of stratified structures using polychromatic light and digital interferogram recording and processing [In Russian]. Computer optics 2010; 34(4): 511-524.
  10. Yu X, Hong J, Liu C, Kim MK. Review of digital holographic microscopy for three-dimensional profiling and tracking. Optical engineering 2014; 53(11): 112306. DOI: 10.1117/1.OE.53.11.112306.
  11. Osten W, ed. Optical Inspection of Microsystems. Boca Raton, London, New York: Taylor & Francis Group; 2007. ISBN: 978-0-8493-3682-9.
  12. Abdulhalim I, Dadon R. Multiple interference and spatial frequencies’ effect on the application of frequency-domain optical coherence tomography to thin films’ metrology. Meas. Sci. Technol. 2009; 20(1): 015108. DOI: 10.1088/0957-0233/20/1/015108.
  13. Dubois A, ed. Handbook of full-field optical coherence microscopy. Technology and applications. Singapore: Pan Stanford Publishing Pte. Ltd.; 2016. ISBN: 978-9-8146-6916-0.
  14. Bhaduri B, Pham H, Mir M, Popescu G. Diffraction phase microscopy with white light. Opt Lett 2012; 37(6): 1094-1096. DOI: 10.1364/OL.37.001094.
  15. Pawley JE, ed. Handbook of biological confocal microscopy. 3rd ed. Berlin: Springer; 2006. DOI: 10.1117/1.600871.
  16. Kim SW, Kim GH. Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry. Appl Opt 1999; 38(28): 5968-5973. DOI: 10.1364/AO.38.005968.
  17. Parthasarathy S, Wolf D, Hu E, Hackwood S, Beni G. A co­lor vision system for film thickness determination. Proceedings of 1987 IEEE Conference on Robotics and Automation 1987: 515-519. DOI: 10.1109/ROBOT.1987.1087984.
  18. Muller RH, Sand ML. Optimum angle of incidence for observing thin-film interference colors. Appl Opt 1987; 26(24): 5211-5220. DOI: 10.1364/AO.26.005211.
  19. Birnie D. Optical video interpretation of interference colors from thin transparent films on silicon. Mater Lett 2004; 58(22-23): 2795-2800. DOI: 10.1016/j.matlet.2004.04.018.
  20. Kitagawa K. Thin-film thickness profile measurement by three-wavelength interference color analysis. Appl Opt 2013; 52(10): 1998-2007. DOI: 10.1364/AO.52.001998.
  21. Hartl M, Krupka I, Polišcuk R, Liška M. Computer-aided evaluation of chromatic interferograms. Journal of WSCG 1997; 5(1-3): 163-172.
  22. Hyvarinen TS, Herrala E, Dall’Ava A. Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications. Proc SPIE 1998; 3302: 165-175. DOI: 10.1117/12.304581.
  23. Jin G, Jansson R, Arwin H. Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates. Rev Sci Instrum 1996; 67: 2930-2936. DOI: 10.1063/1.1147074.
  24. Aleksandrov AYa, Akhmetzyanov MH. Polarization optical methods of deformed body mechanics [In Russian]. Moscow: “Nauka” Publisher; 1973.
  25. Ryabukho VP, Lyakin DV, Grebenyuk AA, Klykov SS. Wiener-Khintchin theorem for spatial coherence of optical wave field. J Opt 2013; 15(2): 025405. DOI: 10.1088/2040-8978/15/2/025405.
  26. Lyakin DV, Ryabukho VP. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy. Quantum Electronics 2013; 43(10): 949-957. DOI: 10.1070/QE2013v043n10ABEH015187.
  27. Lyakin DV, Ryabukho PV, Ryabukho VP. Mutual spatiotemporal coherence of optical fields in an amplitude-splitting interferometer. Optics and Spectroscopy 2017; 122(2): 329-338. – DOI: 10.1134/S0030400X17020175.
  28. Biryukov E. Evolution of image sensors: from CCD to CMOS [In Russian]. Components and technology 2007; 75: 24-27.
  29. Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall; 2008. ISBN: 978-0-13-168728-8.
  30. Dyachenko AA, Paiziev AA, Ryabukho VP, Malinova LI. Method of white light interference in thin film for analysis morphology of red blood cells [In Russian]. Russian Physics Journal 2015; 58(11/3): 116-119.
  31. Dyachenko AA, Ryabukho VP. Effect of spatial and temporal spectral properties of the optical systems in polychromatic interference microscopy [In Russian]. Proceedings of the VI International Conference on Photonics and Information Optics. Moscow: “NRNU MIPhI” Publisher; 2017: 278-279.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20