Investigation of the electromagnetic field in single-dimensional photonic crystals with defects
Shabanov A.V., Korshunov M.A., Bukhanov E.R.


Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, Russia,

Federal Research Center KSC SB RAS, Krasnoyarsk, Russia

Full text of article: Russian language.


Using a transfer matrix method, we calculate the electromagnetic field in one-dimensional photonic crystals with disorder elements and in the presence of defects. It is found that the amplitude of the signal of the electro-magnetic field inside the structure is higher at the frequency of the defect mode than at all other frequencies. If the defect is located in the center of the crystal, the possibility of amplifying the signal amplitude is still preserved despite the presence of the disorder across the thicknesses of the layers. With an increase in the number of layers in the crystal, the field on the defect gets several times stronger.

photonic crystal, defect mode, photonic band gap, layered periodic structures.

Shabanov AV, Korshunov MA, Bukhanov ER. Investigation of the electromagnetic field in one-dimensional photonic crystals with defects. Computer Optics 2017; 41(5): 680-686. DOI: 10.18287/2412-6179-2017-41-5-680-686.


  1. Joannopoulos JD, Meade RD, Winn JN. Photonic crystals: Molding the flow of light. Princeton, NJ: Princeton University Press; 1995. ISBN: 978-0-691037448.
  2. Bykov VP. Spontaneous emission from a medium with a band spectrum. Soviet Journal of Quantum Electronics 1975; 4(7): 861-6. DOI: 10.1070/QE1975v004n07ABEH009654.
  3. Shabanov VF, Vetrov SYa, Shabanov AV. Optics of real photonic crystals. Liquid crystal defects, irregularities [In Russian]. Novosibirsk: "Izdatelstvo SB RAS" Publisher; 2005. ISBN: 5-7692-0737-X.
  4. Gorelik VS, Kapaev VV. Electromagnetic-field amplification in finite one-dimensional photonic crystals. JETP 2016; 123(3): 373-381. DOI: 10.7868/S0044451016090017.
  5. Russell P. Photonic crystal fibers. Science 2003; 299(5605): 358-362. DOI: 10.1126/science.1079280.
  6. Vigneron JP, Simonis P. Natural photonic crystals. Physica B: Condensed Matter 2012; 407(20): 4032-4036. DOI: 10.1016/j.physb.2011.12.130.
  7. Eliseeva SV, Ostatochnicov VA, Sementsov DI. Field and spectra of one-dimensional photonic crystal with inversion type defect. Computer Optics 2012; 36(1): 14-20.
  8. Doskolovich LL, Bykov DA, Bezus EA, Soifer VA. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt Lett 2014; 39(5): 1278-1281. DOI: 10.1364/OL.39.001278.
  9. Bykov DA, Doskolovich LL, Bezus EA, Soifer VA. Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt Express 2014; 22(21): 25084-25092. DOI: 10.1364/OE.22.025084.
  10. Golovastikov NV, Bykov DA, Doskolovich LL, Bezus EA. Spatial optical integrator based on phase-shifted Bragg gratings. Optics Communications 2015; 338: 457-460. DOI: 10.1016/j.optcom.2014.11.007.
  11. Nasedkina YF, Eliseeva SV, Sementsov DI. Transformation of a Gaussian pulse when interacting with a one-dimensional photonic crystal with an inversion defect. Photonics and Nanostructures – Fundamentals and Applications 2016; 19: 31-38. DOI: 10.1016/j.photonics.2016.02.002.
  12. Dadoenkova YuS, Dadoenkova NN, Lyubchanskii IL, Sementsov DI. Reshaping of Gaussian light pulses transmitted through one-dimensional photonic crystals with two defect layers. Appl Opt 2016; 55(14): 3764-3770. DOI: 10.1364/AO.55.003764.
  13. Abram RA, Greshnov AA, Brand S, Kaliteevski MA. A study of a phase formalism for calculating the cumulative density of states of one-dimensional photonic crystals. J Mod Opt 2017; 64(15): 1-9. DOI: 10.1080/09500340.2017.1296597.
  14. Rybin MV, Samusev KB, Limonov MF. Experimental study of the photonic band structure of synthetic opals at a low dielectric contrast. Physics of the Solid State 2007; 49(12): 2280-2289. DOI: 10.1134/S1063783407120116.
  15. Rybin MV, Sinev IS, Samusev AK, Samusev KB, Trofimova EYu, Kurdyukov DA, Golubev VG, Limonov MF. Dimensionality effects on the optical diffraction from opal-based photonic structures. Phys Rev B 2013; 87: 125131. DOI: 10.1103/PhysRevB.87.125131.
  16. Vukusic P, Sambles JR. Photonic structures in biology. Nature 2003; 424: 852-855. DOI: 10.1038/nature01941.
  17. Bossard JA, Lin L, Werner DH. Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm. J R Soc Interface 2016; 13(114): 20150975. DOI: 10.1098/rsif.2015.0975.
  18. Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Reports on Progress in Physics 2008; 71(7): 076401. DOI: 10.1088/0034-4885/71/7/076401.
  19. Jacobs M, Lopez-Garcia M, Phrathep OP, Lawson T, Oulton R, Whitney HM. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nature Plants 2016; 2(11): 16162. DOI: 10.1038/NPLANTS.2016.162.
  20. Yeh P, Yariv A, Chi-Shain Hong. Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am 1977; 67(4): 423-438. DOI:10.1364/JOSA.67.000423.
  21. Aas E. Refractive index of phytoplankton derived from its metabolite composition. Journal of Plankton Research 1996; 18(12): 2223-2249. DOI: 10.1093/plankt/18.12.2223.
  22. McKenzie DR, Yin Y, McFall WD. Silvery Fish Skin as an Example of a Chaotic Reflector. Proc R Soc Lond A 1995; 451(1943): 579-584. DOI: 10.1098/rspa.1995.0144.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20