(44-1) 01 * << * >> * Russian * English * Content * All Issues

Vortex energy flow in the tight focus of a non-vortex field with circular polarization

V.V. Kotlyar 1,2, S.S. Stafeev 1,2, A.G. Nalimov 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,

Molodogvardeyskaya 151, 443001, Samara, Russia,

Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

 PDF, 647 kB

DOI: 10.18287/2412-6179-CO-582

Pages: 5-11.

Full text of article: Russian language.

Using Richards-Wolf formulas, we show that an axisymmetric circularly polarized vortex-free field can be focused into a sharp subwavelength focal spot, around which there is a  region where the light energy flow propagates along a spiral. This effect can be explained by the conversion of the spin angular momentum of the circularly polarized field into the orbital angular momentum near the focus, although the on-axis orbital angular momentum remains zero. It is also shown that a linearly polarized optical vortex with topological charge 2 forms near the focal plane an on-axis reverse energy flow (defined by the negative longitudinal component of the Poynting vector) whose amplitude is comparable with the direct energy flow.

Richards-Wolf formulae, relation between spin angular momentum and orbital angular momentum, reverse energy flow, linear polarization.

Kotlyar VV, Stafeev SS, Nalimov AG. Vortex energy flow in the tight focus of a non-vortex field with circular polarization. Computer Optics 2020; 44(1): 5-11. DOI: 10.18287/2412-6179-CO-582.

This work was supported by the Russian Science Foundation under project No. 17-19-01186 ("Theoretical background"), the RF Ministry of Science and Higher Education under the government project of FSRC «Crystallography and Photonics» RAS, ("Numerical simulation").


  1. Irvine WTM. Bouwmeester D. Linked and knotted beams of light. Nat Phys 2008; 4(9): 716-720.
  2. Sugic D, Dennis MR. Singular knot bundle in light. J Opt Soc Am A 2018; 35(12): 1987-1999.
  3. Larocque H, Sugic D, Mortimer D, Taylor AJ, Fickler R, Boyd RW, Dennis MR, Karimi E. Reconstructing the topology of optical polarization knots. Nat Phys 2018; 14(11): 1079-1082.
  4. Berry MV. Wave dislocation reactions in non-paraxial Gaussian beams. J Mod Opt 1998; 45(9): 1845-1858.
  5. Volyar AV. Nonparaxial Gausian beams: 1. Vector fields. Tech Phys Lett 2000; 26(7): 573-575.
  6. Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
  7. Kotlyar VV, Kovalev AA, Porfirev AP. Radial dependence of the angular momentum density of a paraxial optical vortex. Phys Rev A 2018; 97(5): 053833. DOI: 10.1103/PhysRevA.97.053833.
  8. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  9. Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
  10. Aiello A, Banzer P, Neugebauer M, Leuchs G. From transverse angular momentum to photonic wheels. Nat Photon 2015; 9: 789-795. DOI: 10.1038/NPHOTON.2015.20.
  11. Bauer T, Neugebauer M, Leuchs G, Banzer P. Optical polarization Mobius strips and points of purely transverse spin density. Phys Rev Lett 2016; 117(1): 013601. DOI: 10.1103/PhysRevLett.117.013601.
  12. Eismann JS, Banzer P, Neugebauer M. Spin-orbit coupling and the evolution of transverse spin. Source: <https://arxiv.org/abs/1905.12539>.
  13. Hao X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally polarized beam. Opt Lett 2010; 35(23): 3928-3930. DOI: 10.1364/OL.35.003928.
  14. Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci Rep 2015; 5: 09977. DOI: 10.1038/srep09977.
  15. Wang S, Li X, Zhou J, Gu M. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics. Opt Lett 2014; 39: 5022-5025.
  16. Yuan GH, Wei SB, Yuan XC. Nondiffracting transversally polarized beam. Opt Lett 2011; 36(17): 3479-3481. DOI: 10.1364/OL.36.003479.
  17. Suresh P, Mariyal C, Rajesh KB, Pillai TVS, Jaroszewicz Z. Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask. Appl Opt 2013; 52(4): 849-853. DOI: 10.1364/AO.52.000849.
  18. Anita GT, Umamageswari N, Prabakaran K, Pillai TVS, Rajesh KB. Effect of coma on tightly focused cylindrically polarized vortex beams. Opt Laser Techn 2016; 76: 1-5. DOI: 10.1016/j.optlastec.2015.07.002.
  19. Yuan GH, Wei SB, Yuan XC. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. J Opt Soc Am A 2011; 28(8): 1716-1720. DOI: 10.1364/JOSAA.28.001716.
  20. Chen Z, Zhao D. 4Pi focusing of spatially modulated radially polarized vortex beams. Opt Lett 2012; 37(8): 1286-1288. DOI: 10.1364/OL.37.001286.
  21. Ndagano B, Sroor H, McLaren M, Rosales-Guzmán C, Forbes A. Beam quality measure for vector beams. Opt Lett 2016; 41(15): 3407-3410. DOI: 10.1364/OL.41.003407.
  22. Berry MV. Optical currents. J Opt A: Pure Appl Opt 2009; 11: 094001.
  23. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Оptics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  24. Monteiro PB, Neto PAM, Nussenzveig HM. Angular momentum of focused beams: Beyond the paraxial approximation. Phys Rev A 2009; 79: 033830. DOI: 10.1103/PhysRevA.79.033830.
  25. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc Royal Soc A: Math, Phys Eng Sci 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  26. Youngworth KS, Brown TG. Focusing of high numerical aperture cylindrical-vector beams. Opt Express 2000; 7: 77-87.
  27. Bliokh KY, Bekshaev AY, Nori F. Extraordinary momentum and spin in evanescent waves. Nat Commun 2014; 5: 3300. DOI: 10.1038/ncomms4300.
  28. Bekshaev A, Bliokh KY, Soskin M. Internal flows and energy circulation in light beams. J Opt 2011; 13(5): 053001.


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20