(45-5) 04 * << * >> * Russian * English * Content * All Issues

Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback
A.A. Akimov 1, S.A. Guzairov 1, V.V. Ivakhnik 1

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 806 kB

DOI: 10.18287/2412-6179-CO-888

Pages: 667-672.

Full text of article: Russian language.

Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback for both signal and object waves has been investigated at high reflection coefficients. It has been shown that the optimal operating mode of a four-wave converter on thermal nonlinearity is the mode in which the pumping waves have equal intensities and there is a compensation for a phase shift arising from the pumping wave self-action. In this operating mode of the four-wave radiation converter, as compared with the case of the absence of feedback for both signal and object waves, a significant increase in the amplitude reflection coefficient is observed with an increase in the pumping waves intensities. In this case, despite the decrease in the bandwidth of spatial frequencies of the object wave with an increase in the pumping wave intensities, the quality of radiation conver-sion with feedback for both signal and object waves is better than in the absence of feedback.

four-wave radiation converter, feedback, thermal nonlinearity.

Akimov AA, Guzairov SA, Ivakhnik VV. Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback. Computer Optics 2021; 45(5): 667-672. DOI: 10.18287/2412-6179-CO-888.


  1. Dmitriev VG. Nonlinear optics and wavefront reversal [In Russian]. Moscow: “Fizmatlit” Publisher; 2003. ISBN: 5-9221-0080-7.
  2. Ivakhnik VV. Wavefront reversal and four-wave interaction [In Russian]. Samara: Samara State University Publisher; 2010. ISBN: 978-5-86465-471-2.
  3. Ma X, Yang L, Guo X, Li X. Generation of photon pairs in dispersion shift fibers through spontaneous four-wave mixing: influence of self-phase modulation. Opt Commun 2011; 284(19): 4558-4562. DOI: 10.1016/j.optcom.2011.06.011.
  4. Salem R, Foster MA, Turner AC, Geraghty DF, Lipson M, Gaeta AL. Optical time lens based on four-wave mixing on a silicon chip. Opt Lett 2008; 33(10): 1047-1049. DOI: 10.1364/OL.33.001047.
  5. Shcheulin AS, Angervaks AE, Ryskin AI. Holographic media based on fluorite crystals with colors centers. Saint-Petersburg: ITMO University Publisher; 2009.
  6. Romanov OG, Ormachea O, Tolstik AL, Arce-Diego JL, Pereda-Cubian D, Fanjul-Velez F. Formation of holographic gratings and dynamics of four-wave mixing in nonlinear microresonators. Proc SPIE 2006; 6255: 625507. DOI: 10.1117/12.676523.
  7. Ivakhnik VV, Petnikova VM, Shuvalov VV. Enhancement of the efficiency of wavefront reversal systems using ring resonators. Sov J Quantum Electron 1981; 11(2): 275-276. DOI: 10.1070/QE1981v011n02ABEH005924.
  8. Ivakhnik VV. Optical radiation filtration with nondegenerate four-photon interaction. Russ Phys J 1983; 25(8): 765-767. DOI: 10.1007/BF00895259.
  9. Akimov AA, Guzairov SA, Ivakhnik VV. Four-wave mixing on thermal nonlinearity in a scheme with positive feedback. Computer Optics 2018; 42(4): 534-541. DOI: 10.18287/2412-6179-2018-42-4-534-541.
  10. Voronin ES, Ivakhnik VV, Petnikova VM, Solomatin VS, Shuvalov VV. Compensation of phase distortions in degenerate four-frequency interaction. Sov J Quantum Electron 1979; 9(9): 1180-1184. DOI: 10.1070/QE1979v009n09ABEH009483.
  11. Akimov AA, Ivakhnik VV, Nikonov VI. Phase conjugation under four-wave mixing on resonant and thermal nonlinearities at relatively high reflection coefficients. Opt Spectrosc 2013; 115(3): 384-390. DOI: 10.1134/S0030400X13090038.
  12. Zeldovich BY, Shkunov VV. Influence of spatial interference on amplification in stimulated scattering of light. Sov J Quantum Electron 1977; 7(11): 1345-1349. DOI: 10.1070/QE1977v007n11ABEH004122.
  13. Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wavefront correction (review). Sov J Quantum Electron 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
  14. Vorobeva EV, Ivakhnik VV. Time response of a thin dynamic hologram in a dye solution simulated by a four-energy-level diagram [In Russian]. Computer optics 2002; 24: 91-93.
  15. Kovalev VI, Trofimov VA. Role of nonlinear absorption in phase conjugation of infrared radiation under conditions of a four-wave interaction in semiconductors. Sov J Quantum Electron 1991; 21(11): 1221-1224. DOI: 10.1070/QE1991v021n11ABEH004386.
  16. Akimov AA, Ivakhnik VV, Nikonov VI. Four wave interaction on thermal nonlinearity at large reflectance with allowance pumping waves self-diffraction [In Russian]. Computer optics 2011; 35(2): 250-255.
  17. Pan X, Chen H, Wei T, Zhang J, Marino AM, Treps N, Glasser RT, Jing J. Experimental realization of a feedback optical parametric amplifier with four-wave mixing. Phys Rev B 2018; 97(16): 161115. DOI: 10.1103/PhysRevB.97.161115.
  18. Smetanin SN. Comparative analysis of the use of various solid-state laser media for the self-starting of four-wave PCW generation in a loop laser resonator. Quantum Electronics 2013; 43(1): 37-46. DOI: 10.1070/QE2013v043n01ABEH014945.
  19. Sidorov AI. Basic photonics: physical principles and methods of converting optical signals in photonic devices [In Russian]. Saint-Petersburg: ITMO University Publisher; 2014.
  20. Pakhomov II, Rozhkov OV, Rozhdestvin VN. Optoelectronic quantum devices [In Russian]. Moscow: “Radio i Svyaz” Publisher; 1982.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20