(45-6) 05 * << * >> * Russian * English * Content * All Issues

Vectorial beam generation with a conical refractive surface
M.S. Gubaev 1,2, S.A. Degtyarev 1,2, Y.S. Strelkov 1,2, S.G. Volotovskiy 1, N.A. Ivliev 1,2, S.N. Khonina 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1162 kB

DOI: 10.18287/2412-6179-CO-1036

Pages: 828-838.

Full text of article: Russian language.

We propose to use a refractive conical axicon for generating azimutally polarized beams. We investigate polarization states of optical rays passing through an interface between optical media, and also polarization transformation with a refractive axicon. We develop a software for raytracing which correctly processes polarization states of the rays and visualizes ellipses of polarization. The polarization state is described in the Jones notation and based on the energy conservation law. We derive and implement formulas for calculating the Jones vector in different bases, as well as trans-ferring the Jones vector from one basis to another. Algorithms for displaying polarization ellipses on one plane for beams that are not plane-parallel have been developed. Ray paths in a three-dimensional axicon are calculated and shown with due regard for polarization.

ray optics, axicon, polarization, Fresnel coefficients, azimutally polarized beam.

Gubaev MS, Degtyarev SA, Strelkov YS, Volotovsky SG, Ivliev NA, Khonina SN. Vectorial beam generation with a conical refractive surface. Computer Optics 2021; 45(6): 828-838. DOI: 10.18287/2412-6179-CO-1036.

The reported study was performed under the "ERA.Net RUS plus" program funded by the Russian Foundation for Basic Research within project No. 20-52-76021 (computer simulation) and financially supported by the Russian Federation Ministry of Science and Higher Education under the state contract with the "Crystallography and Photonics" Research Center of the RAS (theoretical derivations).


  1. McLeod J. The axicon: A new type of optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
  2. Durnin J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58(15): 1499-1501. DOI: 10.1103/PhysRevLett.58.1499.
  3. Turunen J, Vasara A, Friberg AT. Holographic generation of diffraction-free beams. Appl Opt 1988; 27(19): 3959-3962. DOI: 10.1364/AO.27.003959.
  4. Kalosha VP, Golub I. Toward the subdiffraction focusing limit of optical superresolution. Opt Lett 2007; 32(24): 3540-3542. DOI: 10.1364/OL.32.003540.
  5. Khonina SN, Kazanskiy NL, Karpeev SV, Butt MA. Bessel beam: Significance and applications – A progressive review. Micromachines 2020; 11(11): 997. DOI: 10.3390/mi11110997.
  6. Yu Y-J, Noh H, Hong M-H, Noh H-R, Arakawa Y, Jhe W. Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle. Opt Commun 2006; 267(1): 264-270. DOI: 10.1016/j.optcom.2006.06.044.
  7. Grosjean T, Saleh SS, Suarez MA, Ibrahim IA, Piquerey V, Charraut D, Sandoz P. Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams. Appl Opt 2007; 46(33): 8061-8067. DOI: 10.1364/AO.46.008061.
  8. Alferov SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807. DOI: 10.1364/JOSAA.31.000802.
  9. Jaroszewicz Z, Burvall A, Friberg AT. Axicon – the most important optical element. Opt Photonics News 2005; 16(4): 34-39. DOI: 10.1364/OPN.16.4.000034.
  10. Khonina SN, Degtyarev SA, Savelyev DA, Ustinov AV. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16): 19052-19064. DOI: 10.1364/OE.25.019052.
  11. Filipkowski A, Piechal B, Pysz D, Stepien R, Waddie A, Taghizadeh MR, Buczynski R. Nanostructured gradient index microaxicons made by a modified stack and draw method. Opt Lett 2015; 40(22): 5200-5203. DOI: 10.1364/OL.40.005200.
  12. Žukauskas A, Malinauskas M, Brasselet E. Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale. Appl Phys Lett 2013; 103(18): 181122. DOI: 10.1063/1.4828662.
  13. Musigmann M, Jahns J, Bock M, Grunwald R. Refractive–diffractive dispersion compensation for optical vortex beams with ultrashort pulse durations. Appl Opt 2014; 53(31): 7304-7311. DOI: 10.1364/AO.53.007304.
  14. Chi W, George N. Electronic imaging using a logarithmic sphere. Opt Lett 2001; 26(12): 875-877. DOI: 10.1364/OL.26.000875.
  15. Golub I, Chebbi B, Shaw D, Nowacki D. Characterization of a refractive logarithmic axicon. Opt Lett 2010; 35(16): 2828-2830. DOI: 10.1364/OL.35.002828.
  16. Khonina SN, Ustinov AV. Very compact focal spot in the near-field of the fractional axicon. Opt Commun 2017; 391: 24-29. DOI: 10.1016/j.optcom.2016.12.034.
  17. Gorelick S, Paganin DM, de Marco A. Axilenses: refractive micro-optical elements with arbitrary exponential profiles. APL Photonics 2020; 5(10): 106110. DOI: 10.1063/5.0022720.
  18. Sanchez-Padilla B, Žukauskas A, Aleksanyan A, Balčytis A, Malinauskas M, Juodkazis S, Brasselet E. Wrinkled axicons: shaping light from cusps. Opt Express 2016; 24(21): 24075-24082. DOI: 10.1364/OE.24.024075.
  19. Khonina SN, Krasnov SV, Ustinov AV, Degtyarev SA, Porfirev AP, Kuchmizhak A, Kudryashov SI. Refractive twisted microaxicons. Opt Lett 2020; 45(6): 1334-1337. DOI: 10.1364/OL.386223.
  20. Zhang Y, Wang L, Zheng C. Vector propagation of radially polarized Gaussian beams diffracted by an axicon. J Opt Soc Am A 2005; 22(11): 2542-2546. DOI: 10.1364/JOSAA.22.002542.
  21. Kuchmizhak A, Gurbatov S, Nepomniaschii A, Vitrik O, Kulchin Y. High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams. Appl Opt 2014; 53(5): 937-943. DOI: 10.1364/AO.53.000937.
  22. Kotlyar VV, Kovalev AA, Stafeev SS. Sharp focus area of radially-polarized Gaussian beam propagation through an axicon. Prog Electromagn Res C 2008; 5: 35-43.
  23. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  24. Wei M-D, Shiao W-L, Lin Y-T. Adjustable generation of bottle and hollow beams using an axicon. Opt Commun 2005; 248(1-3): 7-14. DOI: 10.1016/j.optcom.2004.11.092.
  25. Yang Y, Leng M, He Y, Liu H, Chang Q, Li C. Focal shift in spatial-variant polarized vector Bessel–Gauss beams. J Opt 2013; 15(1): 014003. DOI: 10.1088/2040-8978/15/1/014003.
  26. Rodrigo JA, Alieva T. Freestyle 3D laser traps: Tools for studying light-driven particle dynamics and beyond. Optica 2015; 2: 812-815. doi: 10.1364/OPTICA.2.000812.
  27. Khonina SN, Porfirev AP. 3D transformations of light fields in the focal region implemented by diffractive axicons. Appl Phys B 2018; 124: 191. DOI: 10.1007/s00340-018-7060-4.
  28. Khilo NA, Petrova ES, Ryzhevich AA. Transformation of the order of Bessel beams in uniaxial crystals. Quantum Electronics 2001; 31(1): 85-89. DOI: 10.1070/QE2001v031n01ABEH001897.
  29. Khilo NA. Diffraction and order conversion of Bessel beams in uniaxial crystals. Opt Commun 2012; 285(5): 503-509. DOI: 10.1016/j.optcom.2011.11.014.
  30. Khonina SN, Morozov AA, Karpeev SV. Effective transformation of a zero-order Bessel beam into a second-order vortex beam using a uniaxial crystal. Laser Phys 2014; 24(5): 056101. DOI: 10.1088/1054-660X/24/5/056101.
  31. Skidanov RV, Morozov AA. Diffractive optical elements for forming radially polarized light, based on the use stack of Stoletov. Computer Optics 2014; 38(4): 614-618. DOI: 10.18287/0134-2452-2014-38-4-614-619.
  32. Karpeev SV, Paranin VD, Khonina SN. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer. J Opt 2017; 19(5): 055701. DOI: 10.1088/2040-8986/aa640c.
  33. Masuda K, Nakano S, Barada D, Kumakura M, Miyamoto K, Omatsu T. Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam. Opt Express 2017; 25(11): 12499-12507. DOI: 10.1364/OE.25.012499.
  34. Khonina SN, Ustinov AV, Volotovskiy SG, Ivliev NA, Podlipnov VV. Influence of optical forces induced by paraxial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymer films. Appl Opt 2020; 59(29): 9185-9194. DOI: 10.1364/AO.398620.
  35. Kharintsev SS, Fishman AI, Kazarian SG, Salakhov MK. Polarization of near-field light induced with a plasmonic nanoantenna. Phys Rev B 2015; 92(11): 115113. DOI: 10.1103/PhysRevB.92.115113.
  36. Masuda K, Shinozaki R, Shiraishi A, Ichijo M, Yamane K, Miyamoto K, Omatsu T. Picosecond optical vortex-induced chiral surface relief in an azo-polymer film. J Nanophoton 2020; 14(1): 016012. DOI: 10.1117/1.JNP.14.016012.
  37. Ferrer-Garcia MF, Alvandi Y, Zhang Y, Karimi E. Theoretical analysis on spatially structured beam induced mass transport in azo-polymer films. Opt Express 2020; 28(14): 19954-19965. DOI: 10.1364/OE.395054.
  38. Tovar AA. Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams. J Opt Soc Am A 1998; 15(10): 2705-2711. DOI: 10.1364/JOSAA.15.002705.
  39. Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt Lett 2005; 30(22): 3063-3065. DOI: 10.1364/OL.30.003063.
  40. Radwell N, Hawley RD, Gotte JB, Franke-Arnold S. Achromatic vector vortex beams from a glass cone. Nat Commun 2016; 7: 10654. DOI: 10.1038/ncomms10564.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20