(46-5) 08 * << * >> * Russian * English * Content * All Issues

Calculation of quantum characteristics based on the classical solution of the diffraction problem in a resonator with a dielectric plate
S.I. Kharitonov 1,2, N.L. Kazanskiy 1,2, S.G. Volotovsky 1, S.N. Khonina 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 974 kB

DOI: 10.18287/2412-6179-CO-1174

Pages: 741-751.

Full text of article: Russian language.

The work is devoted to the development of the quantum theory of diffractive optical elements. Aspects of quantum optics are considered by the example of light diffraction from a dielectric plate in a resonator. The paper shows the connection between the classical and quantum solution of the problem of diffraction by a dielectric plate. Expressions are obtained for the eigenmodes of such a resonator, as well as for the operators of the vector magnetic potential and the electric field strength. The method proposed in this paper can be easily extended to dielectric plates with a diffractive microrelief, that is, to diffractive optical elements.

modes of a resonator with a dielectric plate, field quantization, field quantum characteristics.

Kharitonov SI, Kazanskiy NL, Volotovskiy SG, Khonina SN. Calculation of quantum characteristics based on the classical solution of the diffraction problem in a resonator with a di-electric plate. Computer Optics 2022; 46(5): 741-751. DOI: 10.18287/2412-6179-CO-1174.

This work was financially supported by the RF Ministry of Science and Higher Education within the state project of the FSRC "Crystallography and Photonics RAS" (agreement No. 007-GZ/Ch3363/26) in part of analyzing the light diffraction in a resonator with a dielectric plate, and within the framework of the Development Program of Samara University for 2021–2030 within the framework of the "Priority-2030" program with the support of the Government of the Samara Region in part of developing a quantum theory of diffractive optical elements.


  1. Martin V, Brito JP, Escribano C, Menchetti M, White C, Lord A, Wissel F, Gunkel M, Gavignet P, Genay N, Le Moult O, Abellán C, Manzalini A, Pastor-Perales A, López V, López D. Quantum technologies in the telecommunications industry. EPJ Quantum Technol 2021; 8: 19. DOI: 10.1140/epjqt/s40507-021-00108-9.
  2. Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J. Experimental quantum cryptography. J Cryptol 1992; 5(1): 3-28. DOI: 10.1007/BF00191318.
  3. Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys 2002; 74(1): 145-195. DOI: 10.1103/RevModPhys.74.145.
  4. Dušek M, Lütkenhaus N, Hendrych M. Quantum cryptography. In Book: Wolf E, ed. Progress in optics. Vol 49. Ch 5. Amsterdam, Oxford: Elsevier; 2006: 381-454. DOI: 10.1016/S0079-6638(06)49005-3.
  5. Klauder JR, Sudarshan ECG. Fundamentals of quantum optics. New York: W A Benjamin Inc; 1968.
  6. Klyshko D. Physical foundations of quantum electronics. Singapore: World Scientific Publisher Co Ptc Ltd; 2011. ISBN: 978-981-4324-50-2.
  7. Scully MO, Zubairy MS. Quantum optics. Cambridge: Cambridge University Press; 1997. ISBN: 978-0-521-43458-4.
  8. Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995. ISBN: 978-0-521-41711-2.
  9. Kilin SYa. Quantum optics. Fields and their detection [In Russian]. Moscow: “Editorial URSS” Publisher; 2003. ISBN: 5-354-00442-X.
  10. Belinsky AV, Lapshin VB. specific features of interference of photons and other quantum particles. Moscow University Physics Bulletin 2016; 71(3): 258-265. DOI: 10.3103/S0027134916030036.
  11. Belinsky AV, Zhukovskiy AK. The state vector of a quantum system: Mathematical fiction or physical reality, Moscow University Physics Bulletin 2016; 71(3): 253-257. DOI: 10.3103/S0027134916030024.
  12. Belinsky AV, Vladimirov YuS. Relational-statistical nature of the regularities of quantum theory [In Russian]. Space, Time and Fundamental Interactions 2016: 1: 32-42.
  13. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling of image formation with a space-borne Offner hyperspectrometer. Computer Optics 2020; 44(1): 12-21. DOI: 10.18287/2412-6179-CO-644.
  14. Kazanskiy N, Ivliev N, Podlipnov V, Skidanov R. An airborne Offner imaging hyperspectrometer with radially-fastened primary elements. Sensors 2020; 20(12): 3411. DOI: 10.3390/s20123411.
  15. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Numerical simulation of the performance of a spaceborne Offner imaging hyperspectrometer in the wave optics approximation. Computer Optics 2022; 46(1): 56-64. DOI: 10.18287/2412-6179-CO-1034.
  16. Anshakov GP, Salmin VV, Peresypkin KV, Chetverikov AS, Tkachenko IS. Design and control of the diffraction optical system for the prospective project of the observation spacecraft. J Phys Conf Ser 2018; 1096(1): 012076. DOI: 10.1088/1742-6596/1096/1/012076.
  17. Wright LG, Christodoulides DN, Wise FW. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat Photonics 2015; 9(5): 306-310. DOI: 10.1038/nphoton.2015.61.
  18. Bevzenko IG. Investigation of the behavior of ultrashort pulses in multiwire structures with inhomogeneous dielectric filling [In Russian]. Computing, Telecommunications and Control 2016; 252(4): 7-18. DOI: 10.5862/JCSTCS.252.1.
  19. Kharitonov SI, Volotovsky SG, Khonina SN, Kazanskiy NL. Propagation of electromagnetic pulses and calculation of dynamic invariants in a waveguide with a convex shell. Computer Optics 2018; 42(6): 947-958.DOI: 10.18287/2412-6179-2018-42-6-947-958.
  20. Kharitonov SI, Volotovsky SG, Khonina SN. Calculation of the angular momentum of an electromagnetic field inside a waveguide with absolutely conducting walls. Computer Optics 2018; 42(4): 588-605. DOI: 10.18287/2412-6179-2018-42-4-588-605.
  21. Caron CFR, Potvliege RM. Free-space propagation of ultrashort pulses: space-time couplings in Gaussian pulse beams. J Mod Opt 1999; 46(13): 1881-1891. DOI: 10.1080/09500349908231378.
  22. Feng S. Winful HG. Spatiotemporal structure of isodiffracting ultrashort electromagnetic pulses. Phys Rev E 2000; 61(1): 862-873. DOI: 10.1103/PhysRevE.61.862.
  23. Belgiorno F, Cacciatori SL, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala VG, Faccio D. Hawking radiation from ultrashort laser pulse filaments. Phys Rev Lett 2010; 105(20): 203901. DOI: 10.1103/PhysRevLett.105.203901.
  24. Khonina SN, Golub I. Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening. J Opt Soc Am A 2018; 35(6): 985-991. DOI: 10.1364/JOSAA.35.000985.
  25. Slavík R, Park Y, Kulishov M, Azaña J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Opt Lett 2009; 34(20): 3116-3118. DOI: 10.1364/OL.34.003116.
  26. Preciado MA, Shu X, Harper P, Sugden K. Experimental demonstration of an optical differentiator based on a fiber Bragg grating in transmission. Opt Lett 2013; 38(6): 917-919. DOI: 10.1364/OL.38.000917.
  27. Bykov DA, Doskolovich LL, Golovastikov NV, Soifer VA. Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating. J Opt 2013; 15(10): 105703. DOI: 10.1088/2040-8978/15/10/105703.
  28. Liu F, Wang T, Qiang L, Ye T, Zhang Z, Qiu M, Su Y. Compact optical temporal differentiator based on silicon microring resonator. Opt Express 2008; 16(20): 15880-15886. DOI: 10.1364/OE.16.015880.
  29. Kazanskiy NL, Serafimovich PG, Khonina SN. Use of photonic crystal cavities for temporal differentiation of optical signals. Opt Lett 2013; 38(7): 1149-1151. DOI: 10.1364/OL.38.001149.
  30. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014; 343: 160-163. DOI: 10.1126/science.1242818.
  31. Pors A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic metasurfaces. Nano Lett 2015; 15(1): 791-797. DOI: 10.1021/nl5047297.
  32. Kharitonov SI, Khonina SN, Kazanskiy NL. Field quantization in a waveguide with freeform cladding. Proc SPIE 2021; 11793: 117930R. DOI: 10.1117/12.2593197.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20